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1 INTRODUCTION

This document explains the use of my Matlab toolbox CORRAM. The acronym COR-
RAM stands for Computation of Recursive Representative Agent Models. The addi-
tional M indicates the Matlab version of this toolbox. Other versions are available in
Gauss and Fortran.

The toolbox is designed to allow less experienced users of Matlab to quickly set
up, solve, and simulate dynamic, stochastic general equilibrium (DSGE) models. As
a user, you must have sufficient knowledge of the Matlab command syntax to code
the model’s equations. The simulation tool frees you from writing program code that
provides information about the mechanics of the model and about its time series im-
plications. It provides you with plots of impulse responses and tables with second
moments of simulated time series. Experienced Matlab programmers and develop-
ers of complex models whose analysis requires programming beyond the standard
simulation methods can use the toolbox just to compute the model’s solution.

CORRAM provides perturbation solutions of DSGE models. First- and second-
order accurate solutions require no additional Matlab toolboxes. CORRAM includes
the Matlab functions jacobianest and hessianest written by D’Errico (2007) which
employ numerical differentiation to compute first- and second-order partial deriva-
tives of the model’s equations. Third-order accurate solutions require third-order
partial derivatives for which numerical differentiation is too inaccurate. Therefore,
CORRAM resorts to the computer algebra system from the Matlab symbolic toolbox.
The repeated use of the jacobian function from this toolbox provides analytic for-
mulas for the matrices of first-, second-, and third-order partial derivatives of the
model’s equations.

In this document I typeset CORRAM commands and variables in a colored type-
writer font. For instance

EM=DSGE(nx,ny,nz,nu,v);

is the command which creates a new instance of the DSGE class in the object EM.
Keep in mind a few features of the Matlab programming language:

• Matlab passes the arguments of functions per copy and not by reference.
As a consequence, a variable passed to the function and changed within
this function does not change the variable with the same name in the
calling programm.

• The arguments of Matlab functions can be either required, optional, or
consist of name-value pairs. For instance, the function DSGE has five re-
quired arguments (shown above), one optional argument, and the named
argument Names, a cell array with string elements.
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• Required arguments must be passed in the order expected by the func-
tion’s definition and must precede optional arguments as well as name-
value pairs. For instance, if you would call the function DSGE with the
optional argument Symbol in front of the required arguments

EM=DSGE(Symbols,nx,ny,nz,nu,v);
the command would terminate with an error message.

• Matlab is case sensitive. Thus, A and a are different variables.

The next section explains the installation of the toolbox. Section 3 presents the
canonical DSGE model. Section 4 gives an overview of the DSGE class that provides
the interface between the toolbox and the user. Section 5 explains how to set up and
solve your model. Section 6 introduces the simulation tool and Section 7 concludes
with a list of error messages.

2 INSTALLATION

The toolbox consists of the Matlab files listed in Table 1. Simply copy the files on
your hard disk and ensure that the directory that received the files is on Matlab’s
search path.

Table 1: Alphabetic list of files

Cubic.m lapackhelp.m
derivest.m Linear1.m
DSGE.m Linear2.m
GetDHT.m MyPlot.m
GetMaxPlotNumber Quadratic.m
gradest.m SimulateModel.m
hessdiag.m SolveModel.m
hessian.m Sylvester.m
HPF.m TableA.m
jacobianest.m TableX.m
lapack.c tracem.m
lapack.m

Figure 1 shows how the Matlab functions and scripts are interrelated. Basically,
the steps involved to set up, solve, and simulate your model consist in calls of the
functions DSGE, SolveModel, and SimulateModel in the order indicated by the
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Figure 1: Structure of the toolbox
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vertical arrow. These functions invoke other function or scripts as indicated by the
horizontal arrows.

In addition to the core files, there are two scripts and the related Matlab functions
listed in Table 2. The scripts solve and simulate the examples presented in Section
3.4. Run the script EM_Numeric.m to test your installation. If your Matlab includes
the symbolic toolbox you can also run the script EM_Analytic.m.

Table 2: Example scripts and related functions

EM_Analytic.m EM_Numeric.m
EM_Eqs.m EM_Sys.m
EM_Eqs_ds.m EM_Sys_ds.m
EM_Eqs_ds_log.m EM_Sys_ds_log.m
EM_Eqs_log.m EM_Sys_log.m

The first time you use the toolbox with the option syl=true (more on that latter
in this document) the function lapackwill create the file lapack.mexw64 which pro-
vides an interface to the linear algebra package Lapack (see http://www.netlib.
org/lapack/lug/index.html). The CORRAM functions HPF and Sylvester call
functions from the package.

3 THE CANONICAL DSGE MODEL

This section introduces the class of models which can be solved by the toolbox and
explains the structure of the solution. A simple representative agent model will
illustrate these concepts. In subsequent sections I will provide script listings that
document various ways to solve and simulate this model with the CORRAM toolbox.

I assume that you are sufficiently familiar with DSGE models so that I can restrict
the presentation to the absolute minimum. For an introduction to DSGE models and
to solution methods see Fernández-Villaverde et al. (2016) and Heer and Maußner
(2009). For the canonical model and the related algorithms to solve this class of
models see my companion paper Maußner (2017).

3.1 Variables

CORRAM distinguishes three kinds of variables:

1. state variables, i.e., endogenous variables, whose values at the beginning of
time t are predetermined (as, e.g., the stock of capital or the stock of nominal
bonds),
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2. jump or not predetermined variables, i.e., endogenous variables, whose val-
ues are determined within period t,

3. purely exogenous variables, the model’s shocks,

Accordingly, there are three (column) vectors of variables:

• the vector of endogenous state variables xt :=
�

x1, x2, . . . , xn(x)

�T
∈ Rn(x),

• the vector of jump variables yt :=
�

y1, y2, . . . , yn(y)

�T
∈ Rn(y),

• the vector of shocks zt :=
�

z1, z2, . . . , zn(z)

�T
∈ Rn(z).

It will be useful to define two additional vectors

wt :=
�

xt

zt

�

∈ Rn(w), n(w) = n(x) + n(z),

vt :=





xt

zt

yt



 ∈ Rn(v), n(v) = n(x) + n(z) + n(y).

3.2 Equations

The equilibrium law of motion of the model is given by:

0(n(x)+n(y))×1 = Etg(xt+1,zt+1,yt+1,xt ,zt ,yt) (1a)

0n(z)×1 = zt+1 − Rzt −ηt+1, (1b)

ηt+1 := σΩεt+1, (1c)

0n(z)×1 = Etεt+1, (1d)

In(z) = Et

�

εt+1ε
T
t+1

�

, (1e)

Sn(z)×n(z)2 := Et

�

ηt+1

�

ηT
t+1 ⊗η

T
t+1

��

, (1f)

where Et denotes mathematical expectation as of period t and ⊗ the Kronecker
product.

The process for the shocks in (1b) must be stationary. This requires that the eigen-
values of the matrix R must all be located within the unit circle. The covariance
matrix Σ of the vector ηt is

Σ= E
�

ηtη
T
t

�

= E
�

σΩεtε
T
t Ω

Tσ
�

= σΩInzΩ
Tσ = σ2ΩΩT .

Thus, if the positive definite matrix Σ rather then Ω is given and the scaling factor
σ is set equal to unity, Ω can be computed from

Ω= CΛ1/2

where
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• Λ1/2 is the diagonal matrix with the square roots of the eigenvalues of the
matrix Σ on the main diagonal, and

• C is the matrix of the normalized eigenvectors of Σ so that CC ′ = In(z).

The matrix S supplies the third moments of the model’s innovations ηt+1. It is re-
quired only insofar as third-order accurate solutions shall be computed.

3.3 Solution

The solution of the model are time invariant functions of the vector of state variables
wt := [xT

t ,zT
t ]

T and the parameter σ. They determine the future endogenous state
variables xt+1 and the current control variables yt:

xt+1 = hx(xt ,zt ,σ) :=





hx1(wt ,σ)
...

hxn(x)(wt ,σ)



 , (2a)

yt = hy(xt ,zt ,σ) :=





hy1(wt ,σ)
...

hyn(y)(wt ,σ)



 . (2b)

For σ = 0 the model (1) reduces to a system of deterministic non-linear difference
equations. Perturbation methods assume that this system is stable and converges to
the point

�

vT ,vT
�T
≡
�

xT ,01×n(z),y
T ,xT , ,01×n(z),y

T
�T
∈ R2(n(x)+n(z)+n(y)). (3)

Let

w̄t :=
�

xt − x
zt

�

denote the vector of deviations of the model’s endogenous and exogenous states wt

from their stationary values x and 0n(z)×1. The perturbation solution of the model
up to the third order is given by

xt+1 ' x+ hx
ww̄t +

1
2

�

In(x) ⊗ w̄T
t

�

hx
www̄t +

1
2hx
σσ
σ2 (4a)

+ 1
6

�

In(x) ⊗ w̄T
t ⊗ w̄T

t

�

hx
wwww̄t +

1
2σ

2
�

In(x) ⊗ w̄T
t

�

hx
σσw +

1
6hx
σσσ
σ3,

yt ' y+ hy
ww̄t +

1
2

�

In(y) ⊗ w̄T
t

�

hy
www̄t +

1
2hy
σσ
σ2 (4b)

+ 1
6

�

In(y) ⊗ w̄T
t ⊗ w̄T

t

�

hy
wwww̄t +

1
2σ

2
�

In(y) ⊗ w̄T
t

�

hy
σσw +

1
6hy
σσσ
σ3.
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The symbols hi
jkl with i ∈ {x , y} and j, k, l ∈ {w,σ} denote the matrices of partial

derivatives of the functions (2) with respect to the vector [wT
t ,σ]T . The CORRAM

command SolveModel computes these matrices. They are used as arguments of
the function SimulateModel to compute impulse responses of the variables in the
vectors xt+1 and yt to the shocks and to characterize the dynamic properties of the
model via second moments obtained from simulations of the model.

3.4 Example

A simple example model shall illustrate these concepts. Latter sections will present
Matlab scripts that demonstrate the various ways to solve and simulate this model.

Assume a benevolent planner seeks time sequences for consumption Ct , labor in-
put Nt and capital accumulation Kt+1 that maximize

Ut := Et

∞
∑

s=0

β s C1−η
t+s (1− Nt+s)θ (1−η) − 1

1−η
, β ∈ (0, 1) (5a)

subject to the resource restriction

Yt+s = Zt+s(At+sNt+s)
1−αKαt+s, α ∈ (0, 1), (5b)

Kt+s+1 = Yt+s + (1−δ)Kt+s − Ct+s, δ ∈ (0, 1]. (5c)

The first-order conditions of this problem are

θ
Ct

1− Nt
= (1−α)

Yt

Nt
, (6a)

C−ηt (1− Nt)
θ (1−η) = βEt C

−η
t+1(1− Nt+1)

θ (1−η)
�

1−δ+α
Yt+1

Kt+1

�

. (6b)

The simulation tool of CORRAM is able to handle two different specifications of
the exogenous processes {Zt+s}∞s=0 and {At+s}∞s=0. Simulations of more complicated
processes are left to the user.

3.4.1 Trend stationary economy

The first scenario is defined by

ln Zt+s+1 = ρ ln Zt+s + εt+s+1, ηt+1 ∼N (0,σ), (7a)

At+s+1 = aAt+s, a ≥ 1. (7b)

It depicts an economy where labor augmenting technical progress At is either absent
(i.e., a = 1) or grows at the deterministic rate a − 1 > 0. In the latter case, output
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Yt , consumption Ct , and the stock of capital Kt will grow on average at the rate
a − 1. Shocks to total factor productivity Zt trigger fluctuations around this trend.
However, the canonical model requires variables that approach constant values if
the shocks are shut down. The trick is to scale the respective variables by the level
of labor augmenting technical progress. We define

yt :=
Yt

At
, ct :=

Ct

At
, kt :=

Kt

At

and leave hours Nt unscaled. The stock capital Kt is determined from previous de-
cisions. Since At is a deterministic variable, the scaled variable kt is also an endoge-
nous state of the model. Output Yt , consumption Ct , and labor input Nt are chosen
in every period t to satisfy the first-order conditions. Therefore, yt , ct , and Nt con-
stitute the vector of jump variables. Finally, the single purely exogenous variable
is equal to ln Zt . Hence, the model implied by the first-order conditions (6), the
production function (5b), and the law of capital accumulation (5c) is given by

g1(xt+1,yt+1,zt+1,xt ,yt ,zt)≡ yt − Zt N
1−α
t kαt , (8a)

g2(xt+1,yt+1,zt+1,xt ,yt ,zt)≡ θ
ct

1− Nt
− (1−α)

yt

Nt
, (8b)

g3(xt+1,yt+1,zt+1,xt ,yt ,zt)≡ akt+1 − Yt − (1−δ)kt + ct , (8c)

g4(xt+1,yt+1,zt+1,xt ,yt ,zt)≡ 1− βa−η
c−ηt+1(1− Nt+1)θ (1−η)

c−ηt (1− Nt)θ (1−η)

�

1−δ+α
yt+1

kt+1

�

,

(8d)

xt := kt , yt :=
�

yt , ct , Nt

�T
, zt := ln Zt . (8e)

We find the stationary solution of this model by setting ln Zt equal to its stationary
value of zero and by ignoring the expectations operator and as well as the time
indices. Equation (8d), then, implies

y
k
=

aη − β(1−δ)
αβ

(9a)

so that equation (8c) can be solved for c/k:

c
k
=

Y
K
− (a− 1+δ). (9b)

Given y/k and c/k equation (8b) can be solved for N :

θ

1−α
c/k
y/k

=
1− N

N
. (9c)
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Finally, the solution for N can be used to solve equation (8a) for the level of the
scaled capital stock k:

k =
� y

k

�
1
α−1

N (9d)

so that y and c can be recovered from y/k and c/k.

3.4.2 Difference stationary economy

The second growth scenario is a model where labor augmenting technical progress
At+s is driven by a random walk with drift a while total factor productivity is a time
invariant constant Z ≡ 1:

At = aeνt At−1, a ≥ 0, νt ∼N (0,σν). (10a)

Again, we must scale output, consumption, and capital. Since At does change during
period t, we use At−1 as scaling factor so that kt :=≡ Kt/At−1 remains an endogenous
state variable. We employ the definitions

at := At/At−1, kt := Kt/At−1, yt := Yt/At−1, ct := Ct/At−1.

The model, thus, includes an additional variable, the growth factor at and its equa-
tions are

g1(xt+1,yt+1,zt+1,xt ,yt ,zt)≡ yt − a1−α
t N 1−α

t kαt , (11a)

g2(xt+1,yt+1,zt+1,xt ,yt ,zt)≡ θ
ct

1− Nt
− (1−α)

yt

Nt
, (11b)

g3(xt+1,yt+1,zt+1,xt ,yt ,zt)≡ at − aeνt , (11c)

g4(xt+1,yt+1,zt+1,xt ,yt ,zt)≡ at kt+1 − yt − (1−δ)kt + ct , (11d)

g5(xt+1,yt+1,zt+1,xt ,yt ,zt)≡ 1− βa−ηt

c−ηt+1(1− Nt+1)θ (1−η)

c−ηt (1− Nt)θ (1−η)

�

1−δ+α
yt+1

kt+1

�

.

(11e)
xt = kt , yt :=

�

at , yt , ct , Nt

�

, zt := νt . (11f)

The stationary versions of equations (11b)-(11e) imply the solutions for y/k, c/k,
and N given in equations (9a)-(9c). The level of k follows from (8a) and is equal to

k = a
� y

k

�
1
α−1

N .

The next section will use this model to illustrate the usage of the toolbox. The
parameters will be chosen as in Table 3.
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Table 3: Calibration of the example model

Parameter Description Value

a growth factor of output 1.004
α capital share in output 0.3
β discount factor 0.99
δ rate of capital depreciation 0.025
η coefficient of relative risk aversion 2.0
θ utility weight of leisure 2.07
ρ autocorrelation of TFP shock 0.95
σ standard deviation of TFP shock innovations 0.007
σν standard deviation of growth factor shock 0.018

4 PROGRAM INTERFACE

CORRAM stores the information about the model, its solution and simulation as well
as the presentation of the simulation results in a Matlab class with name DSGE. The
properties of this class provide the interface through which the user can interact
with the toolbox. Table 4 lists the class properties, its default settings, and a short
description of its purpose.

Several of the properties of this class will be set at the time when the user creates
an instance of the class. Afterwards he can modify the new model either via the
Matlab variables interface or via Matlab commands.

The class property Var is a structure with several fields. It stores information
about the model’s variables. Table 5 displays the field names, types, and default
settings. The command CreateModel generates an instance of the Var structure
with n(x) + n(z) + n(y) elements. The fields Name and Symbol of the first n(x)
elements receive the strings X1, X2, etc., the next n(z) elements the strings Z1, Z2,
etc., and the last n(y) elements the strings Y1, Y2 etc. As you will learn below, you
can supply more meaningful names and symbols which replace the defaults. You
must, however, stick to the succession of types. CORRAM assumes that the first n(x)
variables are endogenous states followed by n(z) exogenous states preceding the
remaining n(y) jump variables.

You will learn more about the features of the interface as we proceed and find out
how to set up and solve a model.
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Table 4: Alphabetic list of properties of the DSGE class

Property Type Default Purpose

CheckBounds b f if true, check whether a variable exceeds its bounds during simulations
ds b f if true, the model is driven by a difference stationary growth process
Equations s/fh if numeric=false the name else the handle to the Matlab function defining

the models equations
etol d 10−9 tolerance applied in checking the model’s equations
Grid b t if true, turn grid on in plots of impulse responses
hp d 1600 the weight of the Hodrick-Prescott filter, if equal to zero, no filtering takes

place
itol d 10−10 tolerance applied to check for complex coefficients
inobs i 10 number of periods for impulse responses
LegendBox b t if true, legends in plots of impulse responses are set within a box
loadpath s cd path to the directory where Matlab looks for files to be loaded by the program
Messages s cell string with error messages, see Table 9
nu i the number of static equations
numeric b f if true, numeric differentiation will be used
nx i the number of endogenous state variabes
ny i the number of not predetermined variables
nz i the number of shocks
Omega d 0 n(z)× n(z) matrix of doubles, see Ω in (1c)
order i 1 the order of the solution, must be equal to 1, 2, or 3
outfile s Model the name of the file (without file extension) to which results are stored
Print b f if true, print second moments from simulation
Plot b f if true, plot impulse responses
Rho d 0 n(z)× n(z) matrix of doubles, see R in (1b)
Skew d 0 n(z)× n(z)2 matrix of doubles, see S in (1f)
syl b t if true, solve the generalized Sylvester equation
Table s B if equal to A: write results to ASCII file, if equal to X: write results to Excel

table, if equal to B: write to both file types
Trendline b f if true, plots of impulse responses display a trend line
Var struct structure that stores information used to print and plot simulation results

Notes: Abbreviations: b:=Boolean, either t:=true or f:=false, cd:=current working directory, d:=floating point, any
real number, fh:=a Matlab file handle, i:=integer, including 0, s:= character string, struct:=Matlab structure. An
empty field in the third column indicates that the property will be set when an instance of the class is created.

5 SET UP AND SOLVE A MODEL

The commands which create a model depend on whether numeric or analytic deriva-
tives will be used. I begin with the numeric case.

5.1 Numeric derivatives

The script EM_numeric displays a worked out example of the solution and simula-
tion of the example from Section 3.4.1.1

1The program code presented here puts together code segments from the script EM_Numeric.m.
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Table 5: Fields of the Var structure

Field Type Default Effect

Bound(1) d 0 lower bound
Bound(2) d 0 upper bound
Corr b f compute correlations with this variable
Name s variable name for plots and tables
Plotno i 0 plot to panel i∈{1, 2, ..., 6}
Pos i position of variable in xt , yt , or zt
Print b f if true, print second moments for this variable to table
Rel b f if true, compute standard deviations relative to the standard devia-

tion of this variable
Type s type of variable, either x, y, or z
Star d 0 stationary value of variable
Symbol s symbol used to represent variable in the model’s equations
Xi d 0 scaling factor

Notes: Abbreviations: b:=Boolean swich, either t:=true or f:=false, d:=floating point, any real num-
ber, i:=integer (including 0), s:=string. An empty field in the third column indicates that the property
will be set when an instance of the class is created.

5.1.1 Example script

Lines 2 to 9 assign values to the model’s parameters. Lines 12 to 18 compute the
stationary solution from equations (9). This part of the script is model specific and
outside of the CORRAM environment.

EM_numeric
1 % Calibration
2 a=1;
3 alpha=0.3;
4 beta=0.99;
5 delta=0.025;
6 eta=2.0;
7 theta=2.07;
8 rho=0.95;
9 sigma=0.007;

10

11 % Stationary solution
12 YK=(a^eta-beta*(1-delta))/(alpha*beta);
13 CK=YK-(a-1+delta);
14 temp=(theta/(1-alpha))*(CK/YK);
15 Nstar=1/(1+temp);
16 Kstar=(YK^(1/(alpha-1)))*Nstar;
17 Ystar=YK*Kstar;
18 Cstar=CK*Kstar;
19

20 % Create instance of the DSGE class
21 nx=1;
22 nz=1;
23 ny=3;
24 nu=2;
25 v=[Kstar;0;Ystar;Cstar;Nstar];
26 Par=[a;alpha;beta;delta;eta;theta];
27 Names={’Capital’,’log of TFP’,’Output’,’Consumption’,’Hours’};
28 EM=DSGE(nx,ny,nz,nu,v,’Names’,Names);
29

30 % Change default settings
31 EM.numeric=true;
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32 EM.reduced=true;
33 EM.outfile=’EM_numeric’;
34 EM.order=2;
35

36 % Supply equations
37 EM.Equations=@(x,en)EM_Sys(x,en,Par);
38

39 % Transition of shocks
40 EM.Rho=rho;
41 EM.Omega=sigma;
42

43 % Solve Model
44 [Hmat,rc]=SolveModel(EM);
45

46 % Simulate Model
47 if rc>0;
48 EM.Messages{rc}
49 else
50 EM.Var(2).Plotno=1;
51 EM.Var(3).Plotno=2;EM.Var(3).Print=1; EM.Var(3).Rel=1; EM.Var(3).Corr=1;
52 EM.Var(4).Plotno=2;EM.Var(4).Print=1;
53 EM.Var(5).Plotno=2;EM.Var(5).Print=1;
54 EM.Print=true;
55 EM.log=false;
56 EM.Plot=true;
57 [irf,sx,rx]=SimulateModel(Hmat,EM);
58 end;

5.1.2 Create a model

The commands in lines 21 to 27 define the arguments of the function DSGE. This
function has five required arguments, one optional argument, and a name-value pair.
The required arguments are:

1. nx, the number of endogenous state variables n(x),

2. ny, the number of jump variables n(y),

3. nz, the number of shocks n(z),

4. nu, the number of static equations,

5. v, the stationary solution of the model v≡ [xT ,01×n(z),y
T ]T .

The optional argument is not used (we will encounter it in the script EM_analytic).
The argument ’Name’ passes a cell array with the names of the variables to the
function. CORRAM invokes the names, if the user requests plots and tables. The
’Name’ argument is optional. If it is not supplied, CORRAM labels the state variables
as explained in Section 4.
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5.1.3 Change default settings

After the model has been created the user must change the default settings of those
properties of the model that constitute a particular solution algorithm. They are
summarized in Section 5.3 and their effect will become clear in the example scripts
below.

5.1.4 Supply equations

The command in line 37 defines an anonymous function @(x,en) with arguments
x and en and assigns the handle to this function to the Equations property of the
model. The anonymous function is defined from the function EM_Sys(x,en,Par).
This function must be written by the user (its name is arbitrary) and obey the fol-
lowing rules:

• It has two required inputs v and eqn and one optional argument Par.

• The function must return a vector fx with n(x) + n(y) elements.

• The elements of the vector are equal to the left-hand sides of the model’s equa-
tions (1a).

• The function must end with the command line

if eqn>0; fx=fx(eqn); end;
The script EM_Sys presents the function that implements the model from Section
3.4.1:

EM_Sys
1 function fx = EM_Sys(v,eqn,Par)
2 % Example model from CoRRAM-M user guide. Equations for numeric differentiation
3

4 % assign values to parameters
5 a=Par(1);
6 alpha=Par(2);
7 beta=Par(3);
8 delta=Par(4);
9 eta=Par(5);

10 theta=Par(6);
11

12 % variables of the model, 1 refers to period t and 2 to period t+1 variables
13 K2=v(1); K1=v(6);
14 z2=v(2); z1=v(7);
15 Y2=v(3); Y1=v(8);
16 C2=v(4); C1=v(9);
17 N2=v(5); N1=v(10);
18

19 % equations of the model
20 fx=ones(4,1);
21

22 fx(1)=Y1-exp(z1)*(N1^(1-alpha))*(K1^alpha);
23 fx(2)=theta*(C1/(1-N1))-(1-alpha)*(Y1/N1);
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24 fx(3)=a*K2-Y1-(1-delta)*K1+C1;
25 fx(4)=1-beta*(a^(-eta))*(C1/C2)^(eta)*(((1-N2)/(1-N1))^(theta*(1-eta)))*...
26 (1-delta+alpha*(Y2/K2));
27

28 if eqn>0; fx=fx(eqn); end;
29

30 return;
31 end

The optional argument Par allows the user to pass the values of the model’s pa-
rameters a, α, β , η, δ, and θ to the function. Alternatively, you could hard-code the
values of these parameters:

5 a=1.0;
6 alpha=0.3;
7 beta=0.99;
8 eta=2.0;
9 delta=0.025;

10 theta=2.07;

The second argument of the function, eqn is used by the program to compute the
Hessian matrix and must be placed before the return command.

The first argument v represents the vector

�

vt+1

vt

�

:=















xt+1

zt+1

yt+1,
xt

zt

yt















.

Lines 12 through 16 write the elements of this vector into new variables which makes
it easier to code the equations (8a)-(8d) in lines 21 through 24. This step builds on
the definition of the vectors in equation (8e). Without this step, the first equation in
line 21 of EM_Sys would have to be written as

22 fx(1)=v(8)-exp(v(7))*(v(10)^(1-\alpha))*(v(6)^alpha);

In large models it will be hard to track the numbering of the variables in v and, thus,
it is less error prone to assign the elements of this vector to new variables with names
akin to those used in the model’s analytic formulation.

5.1.5 Solve model

The command in line 44 of the script EM_numeric solves the model. The function
SolveModel receives the model object in EM and returns two arguments. The vari-
able rc stores the return code. The integer value 0 indicates success. Otherwise the
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program prints a short error message to the Matlab command window (see line 48
in the script EM_numeric). Table 9 lists the error number and the corresponding
message. The structure Hmat stores in its fields the matrices of the solution (4). For
instance, the field Hmat.Hx_w holds the matrix hx

w, the field Hmat.Hy_w the matrix
hy

w, the field Hmat.Hx_ss the vector hx
σσ

, and so fourth.

5.2 Analytic derivatives

The script EM_analytic provides a worked out example for the solution of the ex-
ample from Section 3.4 with analytic derivatives.2 I will explain the differences
vis-à-vis the script EM_numeric in the next subsections.

5.2.1 Example script
EM_analytic

1 % Calibration
2 Par=struct(’Symbol’,’’,’Value’,0);
3 Par(1).Symbol=’a’; Par(1).Value=1.0;
4 Par(2).Symbol=’alpha’; Par(2).Value=0.3;
5 Par(3).Symbol=’beta’; Par(3).Value=0.99;
6 Par(4).Symbol=’delta’; Par(4).Value=0.025;
7 Par(5).Symbol=’eta’; Par(5).Value=2.0;
8 Par(6).Symbol=’theta’; Par(6).Value=2.07;
9

10 rho=0.95;
11 sigma=0.007;
12

13 % Stationary solution
14 for i=1:1:6;
15 assignin(’base’,Par(i).Symbol,Par(i).Value);
16 end;
17

18 YK=(a^eta-beta*(1-delta))/(alpha*beta);
19 CK=YK-(a-1+delta);
20 temp=(theta/(1-alpha))*(CK/YK);
21 Nstar=1/(1+temp);
22 Kstar=(YK^(1/(alpha-1)))*Nstar;
23 Ystar=YK*Kstar;
24 Cstar=CK*Kstar;
25

26 % Create instance of the DSGE class
27 nx=1;
28 nz=1;
29 ny=3;
30 nu=2;
31 v=[Kstar;0;Ystar;Cstar;Nstar];
32 Names={’Capital’,’log of TFP’,’Output’,’Consumption’,’Hours’};
33 Symbols={’K’,’z’,’Y’,’C’,’N’};
34 EM=DSGE(nx,ny,nz,nu,v,Symbols,’Names’,Names);
35

36 % Modify default settings
37 EM.reduced=true;
38 EM.outfile=’EM_Analytic’;
39 EM.order=3;

2The program code presented here puts together code segments from the script EM_Analytic.m.
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40

41 % Supply equations
42 EM.Equations=’EM_Eqs’;
43

44 % Transition of shocks
45 EM.Rho=rho;
46 EM.Omega=sigma;
47 EM.Skew=sigma^3;
48

49 % Solve Model
50 [Hmat,rc]=SolveModel_N(EM,Par);
51

52 % Simulate Model
53 if rc>0;
54 EM.Messages{rc}
55 else
56 EM.Var(2).Plotno=1;
57 EM.Var(3).Plotno=2;EM.Var(3).Print=1; EM.Var(3).Rel=1; EM.Var(3).Corr=1;
58 EM.Var(4).Plotno=2;EM.Var(4).Print=1;
59 EM.Var(5).Plotno=2;EM.Var(5).Print=1;
60 EM.Print=true;
61 EM.log=false;
62 EM.Plot=true;
63 [irf,sx,rx]=SimulateModel_N(Hmat,EM);
64 end;

5.2.2 Create model

The script EM_analytic assumes that you want to pass the model’s parameter as
symbols to the function which will define the model’s equations. Alternatively, and
similar to the case of numeric derivatives, you can hard code the parameters in the
latter function. The disadvantage of this procedure is that you must change the
function’s code when you want to use different parameter values. If you supply the
parameters in a structure you just have to change the code in lines 3 to 8. The field
names Symbol and Value are mandatory, the name of the structure is arbitrary. The
code in lines 14 to 16 assigns the values to the parameters so that you are able to use
the same commands as in EM_numeric to compute the stationary solution in lines
18 to 24.

The command in line 33 defines a Matalb cell variable Symbols. CORRAM as-
sumes that you employ these symbols in the function which defines the model’s
equations (see Section 5.2.4). If you do not supply symbols for the model’s variables
the program assigns the symbol X1 to the state variable, Z1 to the shock, Y1, Y2 and
Y3 to the three not predetermined variables. In this case, you are bound to formulate
the model’s equations with these symbolic names.

The model object is created in line 34 with a call to the function DSGE. Here you
must pass the required arguments nx through v. Symbols and Names are optional.
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5.2.3 Change default settings

Lines 37 to 39 change the default values of the model’s properties. Since the order
is set to 3, you must also supply the model with the matrix S from (1f). This is
accomplished in line 47. Note, now you must not pass a function handle to the
Equations property but a string with the name of the Matlab function where you
have defined the model’s equations.

5.2.4 Supply equations

The definition of the model’s equations for use with the Matlab symbolic toolsbox is
shown in the script EM_Eqs.

EM_Eqs
1 function [g,v] = EM_Eqs();
2 % Example model from CoRRAM-M user guide. Equations for symbolic differentiation
3

4 % Parameters
5 a=sym(’a’);
6 alpha=sym(’alpha’);
7 beta=sym(’beta’);
8 eta=sym(’eta’);
9 delta=sym(’delta’);

10 theta=sym(’theta’);
11

12 % variables of the model, 1 refers to period t and 2 to period t+1 variables
13 syms K1 z1 Y1 C1 N1 K2 z2 Y2 C2 N2;
14

15 v=[K2 z2 Y2 C2 N2 K1 z1 Y1 C1 N1];
16

17 % equations of the model
18 g=[ Y1-exp(z1)*(N1^(1-alpha))*(K1^alpha);
19 theta*(C1/(1-N1))-(1-alpha)*(Y1/N1);
20 a*K2-Y1-(1-delta)*K1+C1;
21 1-beta*(a^(-eta))*((C1/C2)^(eta))*(((1-N2)/(1-N1))^(theta*(1-eta)))*...
22 (1-delta+alpha*(Y2/K2));
23 ];
24 return;
25 end

The function EM_Eqs has no arguments and returns in the vector v the symbols which
define the vector [vT

t+1,vt]T of the vector valued function g in (1a). In the variable
g the function returns the analytic expressions for the four equations of the model.
Lines 5 to 10 declare the symbols for the model’s parameters. They must agree with
the definitions in lines 3 to 7 of EM_analytic. Alternatively, you could define the
parameters as numeric variables rather than as symbolic variables by assign numeric
values to them:
5 a=1.0;
6 alpha=0.3;
7 beta=0.99;
8 eta=2.0;
9 delta=0.025;

10 theta=2.07;
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The definition of the model’s parameters as symbols has the advantage that you do
not need to recompute the analytic expressions for the derivatives if you change
the model’s calibration. CORRAM saves the symbolic code to a file and loads this
information so that the model can be quickly recomputed with different parameters
settings.

Line 13 uses the syms command to declare the symbolic names of the variables
Kt+1, ln Zt+1, etc. Different from EM_Sys you must use 1 and 2 to distinguish between
period t and t + 1 variables.

5.2.5 Solve model

The model is solved via a call to the function SolveModel which receives both the
model object in EM and the parameter structure in Par.

5.3 Solve options

CORRAM provides several options for the solution of a model. The user can access
these options by changing the respective properties of the model object. The next
paragraphs document the properties in alphabetical order.

etol CORRAM always checks whether the user has correctly solved for the station-
ary solution of the model. The solution algorithm evaluates the model’s equations
at the stationary solution. For each equation i it compares the left-hand side g(i)
to the tolerance etol. If g(i) exceeds this value the program stops with the error
message INVALID STATIONARY SOLUTION. In addition, it writes the equation number
and the respective left-hand side returned by the call to the model’s function to the
file LOGFILE.TXT in Matlab’s current directory. The default value of etol is 10−9.

itol CORRAM’s solution algorithm involves complex valued matrices. The solu-
tion, however, are real valued matrices. The finite precision arithmetic of computers
may entail small imaginary elements. If these are larger than the value of itol
CORRAM prints a warning message and the user should check for correct input and
formulation of his or her model. The default value of itol is 10−10.

lm This is a Boolean switch. When you solve your model for the first time, CORRAM
saves the code for the derivatives of (1b) to a file with extension .mat. It takes the
base name of this file from the string in the model property outfile. The next time
you solve your model, you can set ls to true and CORRAM will look for this file an
load the code. For models with many variables this saves considerable time.

numeric You have learned about the Boolean switch numeric in the previous
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subsections. If numeric=true (or numeric=1), the solution algorithm employs
numeric differentiation and the user must provide the adequate Matlab function with
the model’s equations. In addition, only first- and second-order accurate solutions
can be computed. The default value of numeric is false.

order The order property is an integer value between 1 and 3 and determines
the accuracy of the solution. The default value is 1 (i.e., linear solution).

reduced The Boolean switch reduced tells CORRAM whether is should reduce
the linearized model to a smaller model before the algorithm solves the dynamic
part of the model. The default value is false. If you set reduced=true you must
ensure two things:

1. The static equations of the model must precede the dynamic equations. The
latter are equations where variables dated at period t and t +1 occur simul-
taneously.

2. The nu property of the model must be set to the number of static equations.

The case reduced=false produces many eigenvalues which are reported as either
infinite or very large. They stem from the model’s static equations. Also, be aware
that reduced=true occasionally results in the error message CU MATRIX SINGULAR.
You can respond to this message either by setting reduced=false or by changing
the ordering of the variables in the vector yt .

syl Second- and third-order accurate solutions are obtained from solving gen-
eralized Sylvester equations (see Maußner (2017)). There is no Matlab intrinsic
command to solve these equations. One way to solve this equation is to employ the
vec operator. If the Boolean switch syl is set to true, CORRAM uses an interface
to the Lapack subroutine tgsyl to solve the Sylvester equation. This procedure re-
quires smaller matrices that the vec-operator solution. Therefore, the default for
syl is true

6 SIMULATE A MODEL

The function SimulateModel returns impulse responses and second moments of
simulated time series. In order to compute these objects, the function must know
how to interpret the model’s variables and in what form it should provide the results
to the user.
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6.1 Interpretation of variables

The program can handle four different cases displayed in Table 6. They are invoked
via the setting of two Boolean switches, log and ds.

Table 6: Variable transformations

levels logs

trend stationary I II

difference stationary III IV

6.1.1 Levels versus logs

The Boolean switch log tells the program whether is has to interpret all variables
(except the shocks) either as (possibly scaled) levels of the variables or as natural
logs of the original variables. If you employ the the log-specification, you must (i)
pass the logs of x and y to the function DSGE and (ii) write adequate functions for the
model’s equations. This is easy if you employ numeric derivatives. Consider again
our example from Section 3.4. Change line 25 of EM_numeric to

25 v=[log(Kstar);0;log(Ystar);log(Cstar);log(Nstar)];

and replace EM.log=false in line 55 by EM.log=true. Finally, change the function
EM_Sys as shown below:

EM_Sys_Log
1 function fx = EM_Sys_Log(v,eq_n,Par)
2 % Example model from CoRRAM-M user guide. Equations for numeric differentiation in logs
3

4 %Parameters
5 a=Par(1);
6 alpha=Par(2);
7 beta=Par(3);
8 delta=Par(4);
9 eta=Par(5);

10 theta=Par(6);
11

12 % variables of the model, 1 refers to period t and 2 to period t+1 variables
13 v=exp(v);
14

15 K2=v(1); K1=v(6);
16 z2=v(2); z1=v(7);
17 Y2=v(3); Y1=v(8);
18 C2=v(4); C1=v(9);
19 N2=v(5); N1=v(10);
20

21 % equations of the model
22 fx=ones(4,1);
23
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24 fx(1)=Y1-z1*(N1^(1-alpha))*(K1^alpha);
25 fx(2)=theta*(C1/(1-N1))-(1-alpha)*(Y1/N1);
26 fx(3)=a*K2-Y1-(1-delta)*K1+C1;
27 fx(4)=1-beta*(a^(-eta))*(C1/C2)^(eta)*(1-delta+alpha*(Y2/K2));
28

29 if eq_n>0; fx=fx(eq_n); end;
30

31 return;
32 end

As you see, there are just two changes vis-à-vis the script EM_Sys. The code in line
13 transforms the logs back to levels, including the TFP-shock. As a consequence,
exp(z1) in line 24 of EM_Sys is replaced by z1 in line 24 of EM_Sys_Log.

If you want to solve the example with analytic derivatives, you would define the
model’s equations as shown in the next script:

EM_Eqs_Log
1 function [f,x] = EM_Eqs_Log();
2 % Example model from CoRRAM-M user guide. Equations for symbolic differentiation in logs
3

4 % Parameters
5 a=sym(’a’);
6 alpha=sym(’alpha’);
7 beta=sym(’beta’);
8 eta=sym(’eta’);
9 delta=sym(’delta’);

10 theta=sym(’theta’);
11

12 % variables of the model, 1 refers to period t and 2 to period t+1 variables
13 syms k1 z1 y1 c1 n1 k2 z2 y2 c2 n2;
14

15 x=[k2 z2 y2 c2 n2 k1 z1 y1 c1 n1];
16

17 % equations of the model
18 f=[ exp(y1)-exp(z1+n1*(1-alpha)+alpha*k1);
19 theta*(exp(c1)/(1-exp(n1)))-(1-alpha)*exp(y1-n1);
20 a*exp(k2)-exp(y1)-(1-delta)*exp(k1)+exp(c1);
21 1-beta*(a^(-eta))*exp(eta*(c1-c2))*(1-delta+alpha*exp(y2-k2));
22 ];
23 return;
24 end

6.1.2 Trend versus difference stationary

The Boolean switch ds determines whether growth is deterministic as in the model of
Section 3.4.1 or stochastic as in the model of Section 3.4.2. The DSGE class assumes
the former as default. To change to the latter set the class property ds to true.

Trend stationary growth. CORRAM solves this model in the scaled variables. The
function SimulateModel computes impulse responses and time series which must
be interpreted as percentage deviations from the growth path of the model. This is
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the default behavior implied by the class property ds=false. You may also want
to pass the simulated time series through the Hodrick-Prescott (HP) filter by setting
Verb"hp" to the desired value.3

Difference stationary growth. In difference stationary models even a one-time
shock has lasting effects, since it triggers a permanent deviation from the trend path
(see Maußner (2017), Section 9.2). To take account of this effect you must set
ds=true and include the variable at as the first variable in the vector of not predeter-
mined variables yt . For difference stationary models the function SimulateModel
computes time series for the levels, employs the Hodrick-Prescott filter to the logged
results, and computes second moments from the filtered series. In order to convert
the stationary variables back to levels the program must know the transformation

X t = Aξt−1 x t

where x t is the scaled variable. In the example (11), ξ = 1 for the variables kt , yt ,
and ct and ξ = 0 for the variable Nt . If ds=true, CORRAM gets the value of the
parameter ξ from the information in the field Xi of the structure Var.

Here is a worked out example script for the model in (11). Compare this to the
script EM_analtyic on page 18. Lines 8 and 9 define two additional parameters
which are required to define equation (11c) (see the script EM_Eqs_ds below). Lines
20 to 26 compute the stationary solution. Importantly, lines 33 and 36 ensure that
the variable at is placed at the top of the vector of not-predetermined variables yt

while lines 61, 64, and 65 change the default setting of the field Xi from 0 to 1.
EM_analytic_ds

1 % Calibration
2 Par=struct(’Symbol’,’’,’Value’,0);
3 Par(1).Symbol=’alpha’; Par(1).Value=0.3;
4 Par(2).Symbol=’beta’; Par(2).Value=0.99;
5 Par(3).Symbol=’delta’; Par(3).Value=0.025;
6 Par(4).Symbol=’eta’; Par(4).Value=2.0;
7 Par(5).Symbol=’theta’; Par(5).Value=5.79;;
8 Par(6).Symbol=’astar’;
9

10 rho=0.0;
11 sigma=0.018;
12

13 % Stationary solution
14 for i=1:1:5;
15 assignin(’base’,Par(i).Symbol,Par(i).Value);
16 end;
17 astar=exp(a);
18 Par(6).Value=astar;

3See Hodrick and Prescott (1997). The cyclical component of this filter remains unchanged, if a
linear time trend is added to a time series. Therefore, filtered data from the model are comparable
to log-filtered empirical data, if the latter display exponential growth. See, e.g., Heer and Maußner
(2009) for this property of the HP filter.
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19 yk=(astar^eta-beta*(1-delta))/(alpha*beta);
20 ck=yk-(astar-1+delta);
21 temp=(theta/(1-alpha))*(ck/yk);
22 Nstar=1/(1+temp);
23 kstar=astar*(yk^(1/(alpha-1)))*Nstar;
24 ystar=yk*kstar;
25 cstar=ck*kstar;
26

27 % Create instance of the DSGE class
28 nx=1;
29 nz=1;
30 ny=4;
31 nu=3;
32 v=[kstar;0;astar;ystar;cstar;Nstar];
33

34 Names={’Capital’,’Growth Factor Shock’,’Growth Factor’,’Output’,’Consumption’,’Hours’};
35 Symbols={’k’,’z’,’a’,’y’,’c’,’N’};
36 EM=DSGE(nx,ny,nz,nu,v,Symbols,’Names’,Names);
37

38 % Modify default settings
39 EM.reduced=true;
40 EM.outfile=’EM_Analytic_ds’;
41 EM.order=3;
42 EM.Plot=true;
43 EM.lm=false;
44 EM.ds=true;
45

46 % Supply equations
47 EM.Equations=’EM_Eqs_ds’;
48

49 % Transition of shocks
50 EM.Rho=rho;
51 EM.Omega=sigma;
52

53 % Solve Model
54 [Hmat,rc]=SolveModel_N(EM,Par);
55

56 % Simulate Model
57 if rc>0;
58 EM.Messages{rc}
59 else
60 EM.Var(1).Xi=1;
61 EM.Var(2).Plotno=1;
62 EM.Var(4).Plotno=2;EM.Var(4).Print=1; EM.Var(4).Rel=1; EM.Var(4).Corr=1;
63 EM.Var(4).Xi=1;
64 EM.Var(5).Plotno=2;EM.Var(5).Print=1; EM.Var(5).Xi=1;
65 EM.Var(6).Plotno=2;EM.Var(6).Print=1;
66 EM.Print=true;
67 EM.log=false;
68 [irf,sx,rx]=SimulateModel_N(Hmat,EM);
69 end;

The related function EM_Eqs_ds defines the model’s equations and (hopefully) re-
quires no additional comments. Just compare it to the script EM_Eqs on page 20.

EM_Eqs_ds
1 function [f,x] = EM_Eqs_ds();
2 % Example model from CoRRAM-M user guide. Equations for symbolic differentiation in levels
3

4 % Parameters
5 alpha=sym(’alpha’);
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6 beta=sym(’beta’);
7 eta=sym(’eta’);
8 delta=sym(’delta’);
9 theta=sym(’theta’);

10 astar=sym(’astar’);
11

12 % variables of the model, 1 refers to period t and 2 to period t+1 variables
13 syms k1 z1 a1 y1 c1 N1 k2 z2 a2 y2 c2 N2;
14

15 x=[k2 z2 a2 y2 c2 N2 k1 z1 a1 y1 c1 N1];
16

17 % equations of the model
18 f=[ y1-(a1^(1-alpha))*(N1^(1-alpha))*(k1^alpha);
19 theta*(c1/(1-N1))-(1-alpha)*(y1/N1);
20 a1-astar*exp(z1);
21 a1*k2-y1-(1-delta)*k1+c1;
22 1-beta*(a1^(-eta))*((c1/c2)^(eta))*(1-delta+alpha*(y2/k2));
23 ];
24 return;
25 end

6.2 Simulation output

CORRAM provides two tools to analyze a DSGE model: impulse responses and
second moments of simulated time series. The command in line 57 of the script
EM_numeric or in line 63 of the script EM_analytic passes the model’s solution in
Hmat and the model object EM to the function SolveModel. This function returns in
irf the impulse responses, in sx the standard deviations of simulated time series,
and in rc the matrix of correlations between the model’s variables. If the Print and
Plot switches are set to true the function also writes formatted output to a text file
and/or an Excel file and plots selected impulse responses.

6.2.1 Impulse responses

Impulse responses show the dynamics of the model after a one-time shock to variable
zi t in period t = 2, if the system was in its stationary equilibrium at time t = 1. The
reaction of the model’s variables to the shock provide a good means to explore the
model’s mechanics.

Computation. CORRAM computes impulse responses only from the linear part
of the solution (4). The iterations start at time t = 1 at the stationary solution
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w

�

xt − x
zt

�

(12b)

yt − y= hy
w

�

xt − x
zt

�

, (12c)

for t = 1,2, . . . , T , where ei is the vector with 1 in place i and zeros elsewhere.
The number of periods T is stored in the class property inobs. The variable irf

is a three-dimensional array, each page i = 1, . . . , n(z) stores in its n(x) + n(y) + 1
columns the responses of the state variables xt+1 and the non-predetermined vari-
ables yt to the shock zi t . The time path of the shock is returned in the right-most
column n(x)+ n(y)+ 1 of each page. For instance, irf(:,1,1) stores the impulse
response of the first variable in the vector xt+1 to the first-numbered shock of the
model. The number of rows is equal to inobs.

Impulse responses are returned by SimulateModel in terms of percentage devia-
tions from the stationary solution of the model or from the unshocked growth path,
depending on the setting of the switch ds. For variables whose stationary value is
equal to zero the program returns the absolute deviation from the stationary value.

Output options. The default setting of the property Plot is false and the com-
mand SimulateModel returns the impulse responses in the array irf. It is up to
user to visualize the results. If you want CORRAM to do this job, set Plot to true
and change the setting in the field Plotno of the Var structure. For instance, the
commands in lines 49 to 52 of the script EM_numeric instruct CoRRAM to plot the
time path of the TFP shock in panel 1 and the impulse responses of output, con-
sumption, and hours to panel 2 as shown in Figure 2. CORRAM supports up to eight
panels each of which can display any number of impulse responses. For each shock,
it provides one figure.

6.2.2 Second Moments

Second moments reflect the time series properties of the model (for more details see
Maußner (2017), Section 7.6).

Computation. Their computation involves several steps. The first step is to trace
out time paths of the model’s variables. Towards this purpose CORRAM draws nor-
mally distributed random numbers which represent the innovations εt+1 in (1d).
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Figure 2: Impulse responses

You may also employ random numbers saved in a previous run of the model to the
file eps_array.mat. In this case, you must set the class property ls to true. .
Then, it iterates over

zt+1 = Rzt +σΩεt+1, (13a)

xt+1 − x= ĥx(w̄t ,σ), (13b)

yt − y= ĥy(w̄t ,σ) (13c)

where the right-hand sides of (13b) and (13c) abbreviate the right-hand sides of the
policy functions presented in equation (4). CORRAM sets the perturbation parameter
σ equal to one and starts the iterations at the stationary solution. In this way it traces
out time paths of length equal to the nobs property of the DSGE class.

The user can instruct the program to check whether or not the variables exceed
economically meaningful bounds during the simulation. This may happen if you use
a second- or even third-order solution (see, e.g., Fernández-Villaverde et al. (2016)).
To perform the check, set Checkbounds=true and assign lower and upper bound
for all variables.

For the example from Section 3.4 it is reasonable to assume non-negative lower
bounds and upper bounds of two times the stationary value. You can accomplish
this via the following loop:

29



1 nvar=nx+ny+nz;
2 for i=1:nvar
3 EM.Var(i).Bound(2)=2*EM.Var(i).Star(i);
4 end

CORRRAM saves the random numbers to the file eps_array.mat in the directory
loadpath. If you want to reuse these numbers for repeated simulations set ls to
true.

In the second step the program transforms the hypothetical time series to station-
ary data. If the weight of the Hodrick-Prescott filter in hp is equal to zero and the
model is trend stationary (i.e,. ds is false) the program computes percentage devi-
ations of all variables from either their stationary solution or from their trend growth
path. If hp is positive, CORRAM passes the logs of the time series (or the percentage
deviations from trend if the levels are non-positive) to the Hodrick-Prescott filter.
Difference stationary growth requires the Hodrick-Prescott filter and the program
will stop if hp=0 and ds=true. Otherwise it log filters the time series.

In the third step the program computes standard deviations, correlations between
all variables, and first-order autocorrelations.

The three steps are repeated many times as determined by the value of the snobs
property. The simulation routine then returns in the elements of the vector sx the
average standard deviations of the variables ordered according to

x1 . . . xn(x), z1 . . . , zn(z), y1 . . . yn(y).

The elements of the 2(n(x)+n(y)+n(z))×2(n(x)+n(y)+n(z))matrix rc holds the
contemporaneous correlations and the correlations between current and one-period
lagged variables. The structure of this matrix is sketched in Table 7. The ordering
within the vectors depends on the user’s input in the call to DSGE.

Table 7: Structure of the correlation matrix rc

xt zt yt xt−1 zt−1 yt−1

xt

zt

yt

xt−1

zt−1

yt−1

Output options. The user must set the property Print to true if he wants selected
moments from sx and rc printed to a a file. The setting in the property Table
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determines where this information is written to. Table=’A’ writes to an ASCII file,
Table=’X’ to an Excel file, and Table=’B’ to both.

To request output for a singe variable, set the field Print of this variable in the
structure Var to true. If you want the contemporaneous correlations between this
variable and other variables with Print=true to be displayed set the field Corr
of this variable to true. Finally, if you want standard deviations of other variables
relative to the standard deviation of variable i set the field Rel to true.

For instance, the command in lines 50 to 57 of the script EM_numeric produce
the output displayed in Table 8.

Table 8: Second moments

18-Jan-2017 14:16:32

Second moments. Bounds were not checked.
Quadratic policy functions were used.

Output 1.19 1.00 1.00 0.70
Consumption 0.56 0.47 0.99 0.71
Hours 0.45 0.38 0.99 0.69

Column 1: Variable
Column 2: Standard Deviation
Column 3: Standard deviation relative to variable Output
Column 4: Cross correlation with variable Output
Column 5: First order autocorrelation

6.3 Simulation options

The next paragraphs summarize in alphabetical order those properties of the DSGE
class that determine the simulation of model.

CheckBounds Set this Boolean switch to true if you want to check whether the
model’s variables remain within reasonable bounds during simulations. You must
provide bounds through the Bound field of the Var structure. See page 29.

ds Set this Boolean switch to true if your model belongs to the class of difference
stationary growth models. You must provide scaling factors through the Xi field of
the Var structure. See page 24.

Grid Set this Boolean switch to true if you want to see grid lines on your plots of
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impulse responses.

hp Set this to the desired value of the Hodrick-Prescott filter. Your simulated time
series will not be filtered if hp=0. See page 25.

inobs This number determines the length of the impulse responses. See page 28.

LegendBox Set this Boolean switch to true and the legends in the plots of impulse
will be put in box.

ls Set this Boolean switch to true if you want to employ random numbers saved
in in previous run in the file eps_array.mat. See page 29.

nobs Set this to the desired length of the simulated time series. See page 29.

nofs Set this to the desired number of simulations. See page 29.

outfile The string in this field supplies the base name of the files to which COR-
RAM writes results. The following extensions apply:

mat: stores the analytic expressions of the Jacobian (D), the Hessian (H) and
the matrix of third-order derivatives (T).

txt: stores the ASCII table with second moments.

xlsx: stores the Excel table with second moments.

Print Set this Boolean switch to true if you want CORRAM to write information
about selected second moments to a file. You determine the amount of information
via the fields of the Var structure.

Plot Set this Boolean switch to true if you want plots of selected impulse re-
sponses. CORRAM

Table Set this field to A, X or B, respectively, if you want second moments to be
written to a simple text file, an Excel spreadsheet, or to both. See 30.

Trendline Set this Boolean switch to true if you want your plots of impulse
responses to display a trend line.
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7 ERROR MESSAGES

There are two kinds of error messages: (i) messages produced by Matlab and (ii)
messages issued by CORRAM.

(i) Matlab error messages usually will indicate that something is wrong with your
script. For instance, if you call DSGE without arguments, Matlab will terminate with
the message Not enough input arguments. However, I cannot exclude that er-
ror messages originate from a bug in my code. I provide CORRAM "as is" without
warranty of any kind. The core of this program has been in use by myself for quite
some time and I have used either the programs or the results of others to check the
correctness of the solution algorithm.

(ii) There are a few instances where CORRAM will terminate with an error mes-
sage printed to the Matlab command window. Both the DSGE function and the
SimulateModel test for proper input. For instance, SimulateModel checks the
switch ds and the value of hp and terminates if the former is true and the latter
equal to zero because difference stationary time series must be filtered (see page
30). The error messages should be sufficiently instructive to eliminate the source of
the problem.

The SolveModel function records 8 errors that may occur while it tries to solve
the model. The are presented in Table 9.

Table 9: Error messages from SolveModel

Number Message

1 Model does not exist
2 Invalid stationary solution
3 Illconditioned Jacobian
4 Not able to reduce model
5 Not able to solve reduced model
6 Schur failed
7 Instable model
8 Indetermined model

Error no. 1 is harmless. SolveModel searches for the file with the model’s equa-
tions. If it is not able to locate this file, the function stops. Check the string in
Equations and ensure that the directory is in the Matlab search paths.

In the next step, SovleModel checks the model’s equations. If the left-hand side
of at least one equation is not approximately equal to zero, it terminates with error
no 2 (see page 21). The file Logfile.txt will then show a list with equation numbers
and left-hand side values. There are (at least) three possible sources for this error.
(1) errors in coding the model’s equations, (2) errors in computing the stationary
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solution, and (3) errors in passing the stationary solution to the function. The latter
error occurs, if the positions of the variables in the vector v passed to DSGE do not
coincide with the positions assigned to the variables in the function (1a).

Next, SolveModel evaluates the Jacobian of the model. It expects a real-valued
matrix and stops if this is not the case.

In the next step, SolveModel computes the linear part of the model’s solution.
At this stage errors 4 to 8 may occur. Error 4 indicates that the function is not able
to reduce the linearized model (see page 22). The matrix labeled Cu in equation
(29a) of Maußner (2017) is singular. A reordering of the jump variables may resolve
the problem. Error 5 occurs, if more there are more than n(u) static equations in
the model. Switching from reduced=true to reduced=false should solve this
problem.

Error no 6 indicates an ill-conditioned model that has not been detected by the
previous checks.

In the final step, SolveModel checks the stability and uniqueness of the first-order
accurate solution. This requires n(x) + n(z) eigenvalues of the linearized model to
be less than one in absolute value and n(y) to be larger than one. Error no 7 (8)
indicates that the first (second) requirement is violated. The file Logfile.txt displays
a list of all eigenvalues.
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