Errata

Dynamic General Equilibrium Modelling, 2nd Edition Springer: Berlin 2009
9 June 2023

Chapter 1.2

p. 14: item 2 should read: " 2 . The policy function h is increasing and differentiable."
p. 22: the policy function proposed for the stock of capital should be:

$$
K_{t+1}=k_{0} K_{t}^{k_{1}}
$$

Accordingly, the next to last line on this page should read:
"where the constants k_{0} and k_{1} are unique functions ..."
p. 23: the formula for the savings rate s is

$$
s=\left[\beta a+\beta^{2}(1-a) \delta^{1-\epsilon}\right]^{\frac{1}{\epsilon}}
$$

p. 25: the condition for convergence is $1 / \beta<1$. Accordingly, the sentence in the middle of the page should read:
"If $1 / \beta<A$, the stock of capital approaches ..."

Chapter 1.3

p. 28: The derivative of \mathscr{L} with respect to K_{1} should be:

$$
\frac{\partial \mathscr{L}}{\partial K_{1}}=E_{0}\left\{-\lambda_{0}+\omega_{1}+\beta \lambda_{1}\left(1-\delta+Z_{1} f^{\prime}\left(K_{1}\right)\right)\right\}=0
$$

p. 30: The transversality condition in equation (1.25) should be:

$$
\lim _{t \rightarrow \infty} \beta^{t} E_{0} \lambda_{t} K_{t+1} .
$$

Chapter 1.5

p. 46: at the top of the page, in the third equation $(1-\delta)$ instead of $(1+\delta)$.

Problem 1.2

The equation that determines the constant k_{0} in question d) should be

$$
k_{0}^{1 / \delta}(1-\beta(1-\delta))=\alpha \beta \delta .
$$

Accordingly, the answer to question e) is trivial.

Appendix 2

p. 68: The growth factor of $F\left(X_{t}, 1\right), g_{F}$ must be smaller not greater than on. Thus:

$$
g_{F}:=\frac{F\left(X_{t+1}, 1\right)}{F\left(X_{t}, 1\right)}=\text { constant }<1
$$

p. 70: equation (A.2.3), the first line on the rhs of this equation should be

$$
\frac{C^{1-\eta} v_{1}(1-N)}{1-\eta}+v_{2}(1-N) \text { if } \eta \neq 1 .
$$

At the bottom of this page: the brace below the term $u_{11}(\cdot) / u_{1}(\cdot) C$ should not span the term $d C / C$, thus:

$$
\underbrace{\frac{u_{21}(\cdot)}{u_{2}(\cdot)}}_{\xi} C \frac{d C}{C}=\underbrace{\frac{u_{11}(\cdot)}{u_{1}(\cdot)}}_{-\eta} C \frac{d C}{C}+\frac{d A}{A}
$$

Chapter 2.4

p. 104: In equation (2.45) the definition of the coefficients h_{K}^{C} and h_{Z}^{C} includes the minus sign. Therefore, the braces should include the minus signs:

$$
\bar{C}_{t}=\underbrace{-\frac{t^{21}}{t^{22}}}_{=: h_{K}^{C}} \bar{K}_{t} \underbrace{-\frac{q_{2} / \lambda_{2}}{t^{22}\left(1-\left(\varrho / \lambda_{2}\right)\right)}}_{=: h_{Z}^{C}} \bar{Z}_{t} .
$$

p. 105: In the formulas for the analytic solution the coefficients must be interchanged:

$$
\begin{aligned}
C_{t} & =0.732 Z_{t} K_{t}^{0.27} \\
K_{t+1} & =0.268 Z_{t} K_{t}^{0.27}
\end{aligned}
$$

Chapter 2.5

p. 116: On the right-hand side of equation (2.67) a minus sign is missing. The equation should read:

$$
\left[\begin{array}{cc}
g_{K^{\prime}}^{1}+g_{C^{\prime}}^{1} h_{K}^{C} & g_{C}^{1}+g_{C^{\prime}}^{1}\left(h_{K}^{K}\right)^{2} \\
g_{K^{\prime}}^{2}+g_{C^{\prime}}^{2} h_{K}^{C} & g_{C}^{2}+g_{C^{\prime}}^{2}\left(h_{K}^{K}\right)^{2}
\end{array}\right]\left[\begin{array}{l}
h_{K K}^{K} \\
h_{K K}^{C}
\end{array}\right]=-\left[\begin{array}{l}
\mathbf{h}_{K}^{T} H\left(g^{1}\right) \mathbf{h}_{K} \\
\mathbf{h}_{K}^{T} H\left(g^{2}\right) \mathbf{h}_{K}
\end{array}\right],
$$

Problem 2.4

p. 171: Third paragraph, first line: $\vartheta=0.5$ instead of $\psi=0.5$. Furthermore, the last equation on this page should be:

$$
Y_{t}=Z_{t} N_{t}^{\alpha} K_{t}^{1-\gamma}\left(K_{t}^{G}\right)^{1-\alpha-\gamma}
$$

Chapter 6.3

p. 321: equation (6.33) should be

$$
R_{t+1}=\frac{\Pi_{t+1}-I_{t+1}+q_{t+1} K_{t+2}}{q_{t} K_{t+1}}=\frac{d_{t+1}+v_{t+1}}{v_{t}} .
$$

Chapter 7.2

p. 343: on the right hand side of equation (7.16) the arguments of the function F_{i} must be interchanged, i.e., $F_{i}\left(\epsilon, a^{\prime-1}\left(\epsilon, a^{\prime}\right)\right)$.

Chapter 8.4

p. 426: Equation (8.33) and text below should read:

$$
\begin{equation*}
f^{\prime}\left(a^{\prime}, s^{\prime}\right)=\sum_{s} \sum_{a=a^{\prime-1}\left(a^{\prime}, s\right)} \pi\left(s^{\prime} \mid s\right) f(a, s), \tag{01}
\end{equation*}
$$

where $a^{\prime-1}\left(a^{\prime}, s\right)$ denotes the inverse of the function $a^{\prime}(a, s)$ with respect to its first argument a.

Chapter 9.2

p. 472: the last equation should be

$$
K_{t}^{\alpha} N_{t}^{1-\alpha}=\sum_{s=1}^{6} \frac{c_{t}^{s}}{6}+K_{t+1}-(1-\delta) K_{t}
$$

p. 476: The first-order condition (9.20b) should read:

$$
\frac{1}{\beta}=\frac{\left(c_{t+s}^{s+1}+\psi\right)^{-\eta}\left(1-n_{t+s}^{s+1}\right)^{\gamma(1-\eta)}}{\left(c_{t+s-1}^{s}+\psi\right)^{-\eta}\left(1-n_{t+s-1}^{s}\right)^{\gamma(1-\eta)}}\left(1+r_{t+s}\right), \quad s=1, \ldots, 5 .
$$

In addition, the subsequent text should be replaced by:
Furthermore, we substitute consumption from the budget constraint, $c_{t+s-1}^{s}=$ $\left(1-\tau_{t+s-1}\right) w_{t+s-1} n_{t+s-1}^{s}+\left(1+r_{t+s-1}\right) k_{t+s-1}^{s}-k_{t+s}^{s+1}$ for $s=1, \ldots, 4$ or $c_{t+s-1}^{s}=$ $b_{t+s-1}+\left(1+r_{t+s-1}\right) k_{t+s-1}^{s}-k_{t+s}^{s+1}$ for $s=5,6$, and use $k_{t}^{1}=k_{t}^{7}=0$ so that (9.20) is a system of 9 non-linear equations in the 9 unknowns $\left\{k_{t}^{2}, k_{t+1}^{3}, k_{t+2}^{4}, k_{t+3}^{5}\right.$, $\left.k_{t+4}^{6}, n_{t}^{1}, n_{t+1}^{2}, n_{t+2}^{3}, n_{t+3}^{4}\right\}$.
p. 478: the first equation should be:

$$
K_{t}=\frac{1}{6} \sum_{s=1}^{6} k_{t}^{s}, \quad N_{t}=\frac{1}{6} \sum_{s=1}^{6} n_{t}^{s} .
$$

p. 480: First paragraph, second line: 40×40 matrix instead of 20×20 matrix.
p. 485: Equation (9.23) should be:

$$
Y_{t}=\left(A_{t} L_{t}\right)^{1-\alpha} K_{t}^{\alpha} .
$$

Equation (9.25) should be:

$$
\frac{\partial Y_{t}}{\partial L_{t}}=w_{t}=(1-\alpha) k_{t}^{\alpha} A_{t} .
$$

p. 488: In the second equation on this page it should be ϕ_{s} instead of ϕ_{t}. Thus:

$$
F_{t+1}\left(\tilde{\omega}^{\prime}, s+1, j\right)=\sum_{\left.\tilde{\omega}^{\prime}=\tilde{\omega}_{t}^{\prime} \tilde{\omega}, s, j\right)} \phi_{s} F_{t}(\tilde{\omega}, s, j), \quad s=1, \ldots, 74
$$

Chapter 9.3

p. 483: equation (9.21) has a wrong index of the survival probability

$$
\max \sum_{s=1}^{J} \beta^{s-1}\left(\Pi_{j=1}^{s} \phi_{j-1}\right) u\left(c_{t+s+1}(s), l_{t+s-1}(s)\right)
$$

Chapter 10.1

p. 513: in the line below equation (10.12) it should be $\sigma_{\epsilon}^{2}=0.045$ and not $\sigma_{\epsilon}=0.045$.
p. 514: next to the last line, due to a bug in the program Rch101.g, which has been fixed in the most recent version, the Gini coefficient of labor income is not 0.413 but 0.399.

Chapter 10.2.1

p. 526: equation (10.25), the coefficient of \hat{r}_{t} is not unity but $r /(r+\delta)$:

$$
\frac{r}{r+\delta} \hat{r}_{t}=\hat{Z}_{t}-(1-\alpha) \sum_{s=2}^{60} \frac{k^{s}}{K} \frac{1}{60} \hat{k}_{t}^{s}+(1-\alpha) \sum_{s=1}^{40} \frac{n^{s}}{N} \frac{1}{60} \hat{n}_{t}^{s} .
$$

Chapter 11.1

p. 555: next to last line, it should read $c=r(\cos \theta+i \sin \theta)$.
p. 560: Matrix multiplication is in general not commutative $A B \neq B A$, except in special cases. Thus, equation (11.8a), is not a rule.
p. 568: The equation before the last paragraph should read

$$
L \tilde{\mathrm{x}}=\mathrm{b}
$$

and not $L \tilde{\mathbf{x}}=\mathbf{x}$.

Chapter 11.2

p. 574: In the statement of the implicit function theorem it should read:

Then there exits an open ball B, centered at $\overline{\mathbf{x}} \in U_{1}$ and a continuous map $\mathbf{f}: B \subset U_{1} \rightarrow U_{2}$ such that $\overline{\mathbf{y}}=\mathbf{f}(\overline{\mathbf{x}})$ and \ldots
p. 575: equation (11.38) should be:

$$
J(\overline{\mathbf{x}}):=\mathbf{f}_{x}(\overline{\mathbf{x}})=-D_{y}^{-1}(\overline{\mathbf{x}}, \overline{\mathbf{y}}) D_{x}(\overline{\mathbf{x}}, \overline{\mathbf{y}}),
$$

p. 578: fifth line: is should be: $s^{\prime \prime}\left(x_{0}\right)=s^{\prime \prime}\left(x_{n}\right)=0$
p. 580: In the definition of a family of orthogonal polynomials, the "if and only if" refers to the case $i \neq j$ only, i.e., there is no special requirement for the case $i=j$ (except in the definition of orthonormal polynomials).
p. 581: In equation (11.45), the second line left to the brace should read

$$
\frac{\pi}{2} \text { if } i=j \neq 0 .
$$

p. 582: To be consistent with equation (11.46), equation (11.50) should be

$$
\hat{f}(z)=\frac{1}{2} \alpha_{0}+\sum_{i=1}^{n} \alpha_{i} T_{i}(X(z)) .
$$

p. 584: In the definition of the discrete version of the orthogonality property of Chebyshev polynomials, the relation between the upper limit of summation in equation (11.56), m and the indices i and j is: $i, j<m$.

Chapter 11.3

p. 601: Equation (11.78) should be:

$$
\begin{aligned}
& \int_{a_{1}}^{b_{1}} \cdots \int_{a_{n}}^{b_{n}} f\left(z_{1}, \ldots, z_{n}\right) d z_{1} \ldots d z_{n} \\
\simeq & \frac{\pi^{n}\left(b_{1}-a_{1}\right) \ldots\left(b_{n}-a_{n}\right)}{(2 m)^{n}} \sum_{i_{1}=1}^{m} \cdots \sum_{i_{n}=1}^{m} f\left(Z\left(\bar{x}_{i_{1}}\right), \ldots, Z\left(\bar{x}_{i_{n}}\right)\right) \\
& \times \sqrt{1-\bar{x}_{i_{1}}^{2}} \cdots \sqrt{1-\bar{x}_{i_{n}}^{2}}
\end{aligned}
$$

Chapter 11.5

p. 610: The right hand side of equation (11.88) should begin with x_{s} not x_{s+1}, i.e.,

$$
x_{s+2}=x_{s}-\frac{x_{s+1}-x_{s}}{f\left(x_{s+1}\right)-f\left(x_{s}\right)} f\left(x_{s}\right) .
$$

p. 613: Second line: In the definition of the Lipschitz property, the statement should be: "for all $\mathbf{x}^{1}, \mathbf{x}^{2} \in \mathcal{N}\left(\mathbf{x}^{s}\right)^{\text {". }}$.
p. 615: In equation (11.93) the plus sign is missing, i.e., the equation should read:

$$
A^{s+1}=A^{s}+\frac{\left[\mathbf{y}^{s+1}-A^{s} \mathbf{w}^{s+1}\right]\left(\mathbf{w}^{s+1}\right)^{T}}{\left(\mathbf{w}^{s+1}\right)^{T}\left(\mathbf{w}^{s+1}\right)}
$$

Chapter 12.1

p. 649: line 9 from the top, the approximation is:

$$
\mathbf{f}\left(\mathbf{x}^{*}+\mathbf{h}\right) \simeq \mathbf{f}\left(\mathbf{x}^{*}\right)+J\left(\mathbf{x}^{*}\right) \mathbf{h}, \mathbf{h}=\mathbf{x}-\mathbf{x}^{*},
$$

Chapter 12.4

p. 663: equation (12.17):

$$
\min _{\left(g_{t}\right)_{t=1}^{T}} \sum_{t=1}^{T}\left(y_{t}-g_{t}\right)^{2}+\lambda \sum_{t=2}^{T-1}\left[\left(g_{t+1}-g_{t}\right)-\left(g_{t}-g_{t-1}\right)\right]^{2} .
$$

p. 664: the entry in the second row and fourth column of the matrix K should be 1 and not zero.

References

p. 683: In Section 11.3.2 we cite Stroud (1971). However, this book does not appear in the References. This missing entry is:

Strout, A.H. 1971. Approximate Calculation of Multiple Integrals. Englewood Cliffs, NJ. Prentice-Hall.

