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Abstract

This thesis proposes a new method for the transcription of music based on a technique

called audio fingerprinting. We try to transcribe automatically the notes played by

melody instruments with the help of a sound database . Musical notations in the form

of General MIDI files are produced. The whole architecture of our system is based on

the idea to traverse the audio query step by step and to compare dimensional reduced

fingerprints with precomputed ones of a large sound database. These fingerprints are

obtained through the application of an Oriented Principle Component Analysis of two

appropriate training sets for pitch and instrument recognition. We use an indexing

technique to speed up the computationally expensive database search and present two

ideas to transcribe polyphonic music with a monophonic sound database.
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Chapter 1

Introduction

This thesis focuses on the music transcription problem. The main task is to notate a

piece of recorded music, or in other words, the generation of a musical score.

Figure 1.1: The fundamental music transcription problem is the generation of a musical
score from recorded audio data.

Figure 1.1 pictures our Audio2MIDI system as a kind of translator between the two

different music representations, the recorded audio data on the left and a musical score on

the right. And that association cuts right to the chase. Although such a transcription

can be performed by experienced musicians it’s still a tedious task for a computer.

Despite many efforts, the accuracy of automatic music transcription lags still behind in

comparison with related problems like the recognition of scanned text or speech [19].

If we address the translation idea again we should at first state more precisely the

originalities of the two “languages” audio and MIDI.
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1.1 Audio

The term audio refers to a digital representation of “what you hear”, usually represented

as a waveform like the blue one on the left side of figure 1.1. It’s a sampled and quan-

tisized representation of frequencies produced by a vibrating source (e.g. an instrument

or a speaker) [9]. The crux is that “what you hear” (the latin translation of the term au-

dio) doesn’t really fit for digital or analog recordings because they comprise even more

information of what you can not hear. For our music transcription task the physical

limitations of the human hearing organ are rather a blessing than a burden, especially

if they work hand in hand with some sort of filter in our brain known as the “cocktail

party effect”. Together they save us to suffer from sensory overload due to unfiltered

perception and allow us to concentrate only on certain parts of an arrangement. The

computer in turn has to learn how to sift out the most interesting signal parts to bore its

way through plenty of more or less useful information. We address this difficult problem

by the use of a technique called “Oriented Principle Component Analysis” (see section

3.5).

1.2 MIDI

MIDI is the abbreviation for Musical Instrument Digital Interface. MIDI describes a

protocol hat enables computers and electronic musical instruments to communicate with

each other in real time through the transmission of short byte messages. Although

mentioned, the real time aspect is not relevant for our task since we just use the MIDI

file format with it’s messages which are closely related to a musical score. The most

important MIDI messages are note ONs, note OFFs, instrument changes and tempo

changes. Together they can describe a complete arrangement.

1.3 Motivation

Various music classification and retrieval applications like genre recognition demand a

parametric representation of the data. And the MIDI standard provides an established

and sophisticated format. Dozens of music transcription implementations are available

(e.g. [19, 10] or [15]). The one thing that all of them have in common is the usage of

MIDI files for output. That again underlines the acceptation of the MIDI format for our

task. Most implementations include assistants to allow (or force) the user to determine
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parameters like for example the used instruments or polyphony.

IMS for example advertises their “intelliScore Ensemble” as “the world’s only multi-

instrument WAV to MIDI converter” [15], emphasizing the inherent difficulties of multi-

instrument detection. However even they have to admit that their “recognition is best

on audio files that are not too complex and contain only a few instruments” and that

“most drums and percussion cannot be recognized” [15].

As far as we know our system in turn is the world’s only audio to MIDI converter

which performs a search among a sound database. The remainder of this thesis describes

a test bed which is used determine how suitable such a sound database search might be

for the music transcription task.

The remainder of this thesis is organised as follows. Chapter 2 gives a short description

of how the different parts of our system work. Chapter 3 describes the underlying

idea of our system, an algorithm called “Distortion Discriminant Analysis”. Chapter 4

describes an indexing technique which is used to speed up the database search. Chapter

5 is dedicated to the tuning of our training parameters. Chapter 6 describes different

strategies to deal with the inherent repugnancy of a polyphonic query and a monophonic

database. A short description of the installation and the different tools can be found in

chapter 7. An evaluation of our system and some test examples are presented in chapter

8. The last chapter is reserved to a short recapitulation.
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Chapter 2

System overview

This chapter provides an overview of our Audio2MIDI system with a short description

of its different parts starting with the generation of the sound database right through to

the assembly of the MIDI output.

Figure 2.1: The whole architecture of our Audio2MIDI system. Audio data (blue) is con-
verted into MIDI data (green). Eigenvectors generated by Oriented Principle
Component Analysis are the core of our system.
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2.1 Instrument Database

To automatically create the instrument database we use a parametric representation like

instruments 0-79,81,83-95,104-119 | notenumbers 32-95 | velocities 95 | durations 446 | intervals 546

to initially create a database MIDI file by the use of the c++ MIDI library libjdkmidi

[18]. This MIDI file serves as ground truth. The real (audio) instrument database is

then generated by the versatile MIDI to WAV converter timidity [32]. Timidity performs

a MIDI2Audio conversion and works like a hardware synthesizer. By the use of high

quality soundfont files [31] (real instrument samples) timidity is able to produce more

than satisfying results.

2.2 OPCA & Fingerprints

An algorithm called “Distortion Discriminant Analysis” (DDA) proposed by Christo-

pher J. C. Burges, John C. Platt and Soumya Jana [5, 6] provides the basis for our

Audio2MIDI system. The main idea is to perform an Oriented Principle Component

Analysis (OPCA) on a training set out of our instrument database. The “adbm” pack-

age provides some Perl scripts and useful tools to generate distorted versions of the

training set which are required by OPCA.

The result of the OPCA is a matrix of eigenvectors which is used to project the high-

dimensional input space into a lower-dimensional feature space. The audio database is

divided into slices of a few ms length. The eigenvalues are used to project each slice

(its log spectrum) to a lower dimensional fingerprint which comprises only the most

distinctive information. In this way a fingerprint database is created.

2.3 Indexing

What we actually perform is a search through our fingerprint database. For this purpose

the audio query is partitioned too and each query slice is projected and matched against

the precomputed fingerprint database. First tests revealed an insufficient elapse time of

a simple nearest neighbour search. To speed up the database search we implemented

an indexing technique proposed by Jonathan Goldstein, John C. Platt and Christopher

J.C. Burges [12, 13] based on the use of bit vectors. What we actually try is to sift out

as many inapplicable database entries as possible with the help of a fast dimension-wise
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comparison. A quite complex indexing step is necessary to create a bit vector index

which can be stored for later use to perform a massive reduction of the search space.

2.4 Lookup & Assembly

By now we have an instrument database, together with it’s ground truth MIDI file, a

corresponding fingerprint database and a bit vector index at our disposal. With this

equipment we are able to assign every query slice to a database slice and in turn to

make an assumption which notes and instruments are present within a certain query

slice. This assumption can be approved by the analysis of adjacent query slices.

Multiple slices with the same pitch and instrument are clustered into groups which

again form the final MIDI events.

6



Chapter 3

Distortion Discriminant Analysis

3.1 Stream audio fingerprinting

Figure 3.1: Overall architecture of the stream audio fingerprinting system, taken from
[6]. The oscillogram at the top represents an audio stream of subsequent
songs. A fingerprint of each overlapping audio trace is matched against a
large precomputed fingerprint database. If it is found in the database a
second fingerprint is used to validate the result.

An algorithm called “Distortion Discriminant Analysis” (DDA) proposed by Christo-

pher J. C. Burges, John C. Platt and Soumya Jana [5, 6] provides the basis for our

Audio2MIDI system. The main aspects of this algorithm are described in the following

sections. The DDA algorithm was originally designed for stream audio fingerprinting

(SAF). The main task of SAF is to identify audio segments (i.e. songs) in an audio

stream by comparing a dimensional reduced vector (fingerprint) of that audio segment
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against a large database of pre-computed fingerprints. The mentioned reduction in di-

mension is indeed just a side effect. Classifying high dimensional data, like it is the case

in the audio domain, bears the challenge to extract only the most serviceable information

and to “brush aside” noisy signal components on the other hand. DDA tries to solve

this difficult problem and allows the creation of fingerprints that are, in turn, used to

identify the name of the actual playing song in the audio stream.

The music transcription problem can be formulated very similar such as to identify the

note and actual playing instrument at a certain position of an audio file with the help of

a large instrument database. And that fits perfectly for the special case of a monophonic

piece of music. But in the course of that project, especially after the first polyphonic

tests, we realized that some modifications were necessary to adapt the DDA algorithm

for our purpose. These will be explained in the following sections as well.

3.2 Distortions

The main problem DDA tries to come to grips with is the presence of distortions in the

query signal (i.e. the audio stream) due to background noise, signal compression and

conversion, quality differences of the audio hardware, or varying phase alignment. The

DDA algorithm copes with all but the last mentioned class of distortions by analyzing

distorted versions of the original training signal as well. Or more exactly by considering

the differences between the original and each of its distorted versions.

The full SAF system applies distortions like compressors, expanders, mp3 encoding &

decoding, resampling, frequency filters, time compression or pitch altering which include

almost all sorts of distortions that are imaginable or at least producible by common

audio editing tools. For our task we first applied a subset of the mentioned distortions

using the powerful tool sox [30]. But further tests revealed that both pitch and in-

strument recognition profit only from a limited number of distortions namely pitch and

“instrument” distortions. For further information see section 3.5.

3.3 Fast Gabor transformation

Although there are a few musical transcription approaches in the time domain, a vast

majority of recent work is done in the frequency domain [27]. And DDA is not an

exception. Burges’ audio fingerprinting system [6] utilizes “Modulated Complex Lapped

Transform” (MCLT) [21] to transform the audio signal from the time domain into the
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A time domain representation of MIDI note

number 60 (C3) played on 5 selected instru-

ments with a duration of 250 ms with a sam-

pling frequency of 48 kHz.

A similar setup is used to train our “pitch de-

tector”.

Evidently there’s a remarkable difference in the

attack, decay, sustain and release times. These

differences have to be taken into account for an

accurate transcription.

Figure 3.2: Example oscillogram of 5 selected instruments

frequency domain. For the same purpose our system applies a fast implementation of

the Gabor transformation [3] which is closely related to MCLT with some advantages.

The corresponding spectral rep-

resentation to figure 3.2 within a

frequency band from 0 Hz up to

approx. 1400 Hz.

Again C3 at 261 Hz together with

its first four more or less distinct

upper partials.

This represents a small fraction

of the training input of our pitch

classifier.

Figure 3.3: Corresponding spectrogram to figure 3.2

By the use of a Gaussian window the Gabor transformation is “optimal” in the sense

that by any choice of its window parameters the minimum of Heisenberg’s uncertainty

9



principle is reached. Usually there is a trade-off between the resolution in the time and

the frequency domain. Although we might need different resolutions in the frequency

domain for instrument and note detection we can be sure that the corresponding accuracy

in the time domain is optimal too [3].

Figure 3.3 shows the corresponding spectrogram to the oscillogram of figure 3.2 and

the most of it is self-explanatory. Only the parameter bcrit needs some explanation.

bcrit is one of the most important tuning parameter of G. v. d. Boogaart’s fast Gabor

transformation implementation [2]. It allows the user to choose the resolution in the

frequency domain which again has effect on the corresponding resolution in the time

domain. It’s called lattice constant because it determines the shape of the Gaussian

windows which in turn build a grid in the time-frequency plain. For further information

see [3]. For our purpose it is sufficient to introduce the two basic equations

bover =
bcrit√

5
and aover =

1

bcrit ·
√

5

where bover and aover donate the actual resolutions in the frequency and in the time

domain. The scalar value 5 here and above is an empirical determined oversampling

factor [3]. For example a bcrit value of 26.2039 leads to

bover =
26.2039√

5
≈ 11.72Hz and aover =

1

26.2039 ·
√

5
≈ 0.017s

3.4 Data preparation

The SAF/DDA system applies some preprocessing steps but only some of them really

make sense for our task. First of all they downsample training and test audio data to

11025 Hz. We use a sampling frequency of 48000 Hz since our transcription task, first

of all the instrument recognition, profits greatly by the use of higher frequency portions

(see chapter 5).

We act in concert with SAF by analysing the logarithm of the spectrum. To remove

distortions caused by frequency modulation or volume adjustment DDA performs a

preprocessing step to penalize the details of the signal by taking the component-wise

difference between the log spectrum and some sort of smooth approximation of each

input vector. Our tests revealed that such a preprocessing step is dispensable for our

task because it has no real effect on our results. Our mmca implementation performs a

demeaning step at each stage (see section 3.6) to remove distortions caused by volume

10



adjustment [2].

3.5 Oriented Principle Component Analysis

By now we have formulated our problem, determined that it is similar to SAF and

therefore it is likely that it could be solved by the same algorithm DDA by name. One

would ask, isn’t it possible to compare the spectral representation of a piece of music

directly with our database? It is possible of course, but not feasible due to at least two

important reasons.

First but not worst the sheer data complexity. Although we restricted the pitch

recognition to the range from MIDI note number 32 to 95, we at least have to analyse

a frequency band from 50 Hz up to a minimum of 2000 Hz (fundamental frequencies

of note number 32 and 95) with a resolution of approximately 5 Hz to be able to dif-

ferentiate between the lowest tones (i.e. gis1 ˜51 Hz and a1 ˜55 Hz). That leads to a

frequency vector of length 390 which is somehow unjustified still its purpose is just to dis-

tinguish between 64 different pitch values. There is a similar relationship for instrument

recognition.

The second and more severe problem is that very little signal distortions might have un-

expected and sometimes weird effects, especially within higher frequency bands. That’s

why one can state that not all the information, or in other words all the frequency bands

are equally important to classify a certain input. That holds for pitch as for instrument

recognition. One way to overcome this problem is to choose the most suitable informa-

tion by heuristic methods or by hand which may lead to expedient results for a given

task but not optimal [6].

Another way to face the mentioned problems is to perform a so called Oriented Prin-

ciple Component Analysis (OPCA) which is the core of the DDA algorithm. OPCA

should solve the two problems stated above in one stroke. It provides some sort of intel-

ligent dimensionality reduction, in other words, it ensures that only the most important

parts of information has to be analysed to reduce calculation time. How is this done?

The remainder of this section should illustrate that.

3.5.1 Mathematical background

OPCA is an elaborated version of Principle Component Analysis (PCA) which again

performs some sort of automatic multivariate analysis for dimensionality reduction. The
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term multivariate implies that dependencies between different variables or even groups

of variables are considered to reveal the best distinctive features, or principle compo-

nents, of a given training set. Later these principal components are used to classify

unknown test data. Dimensionality reduction is achieved by linear projection from a

high dimensional input space I into a lower dimensional feature space F defined by [1]

~f = PT~ı P = [~n1, . . . , ~nd] (3.1)

with a p-dimensional input space vector ~ı and a d-dimensional feature space vector ~f

(d < p). The p-dimensional vectors ~n1, . . . , ~nd represent the output of OPCA and the

feature space vectors ~f are called the principle components (PCs) or fingerprints.

The vectors n1, . . . , nd are chosen in order to maximize inter-class variance and to

minimize intra-class variance (similar to linear discriminant analysis [11]). The term

classes correspond to songs (SAF system) or in our case to pitches or instruments. With

a high inter-class variance its easier to distinguish between different classes, and that’s

exactly what we desire. A low intra-class variance on the other hand should make our

classifier to be tolerant to distortions within the test signal. What calculations are

actually necessary for the determination of these projection vectors ~n1, . . . , ~nd?

In order to maximize inter-class variance and to minimize intra-class variance simul-

taneously, OPCA tries to find the vectors ni that maximize the generalized Rayleigh

quotient [6]

qi =
~nT

i C~ni

~nT
i R~ni

(3.2)

where C is defined as the intra-class covariance matrix [6]

C ≡ 1

M

∑
m

(~xm − E[~x])(~xm − E[~x])T (3.3)

and R is the noise correlation matrix [6]

R ≡ 1

MK

∑
m

∑
k

(~̃x
k

m − ~xm)(~̃x
k

m − ~xm)T . (3.4)

The maximization of 3.2 is equivalent to both the maximization of the inter-class

variance and the minimization of the mean squared distance to all of its distortions

projected along ~ni. By setting ∇q = 0 (i.e. differentiating 3.2 with respect to the ~ni)

equation 3.2 could be converted into [6]

12



C~ni = qiR~ni (3.5)

which describes the generalized eigenvalue problem. In our implementation R is reg-

ularized to be sure that it is of full rank and thus can be inverted. If R is invertible it

can be reduced to the standard eigenvalue problem [6]

R−1C~ni = qi~ni. (3.6)

The proof that the found eigenvectors are optimal in the sense of maximizing 3.2

can be found at [24]. OPCA solves this eigenvalue problem and its outputs are those

eigenvectors ni with the highest “eigenvalues” qi.

3.5.2 Application

By now we have chosen a training set out of our large sound database together with some

distorted versions and their spectral representation. This spectral representation of our

training set, or more precisely its demeaned logarithm, represents the OPCA input. The

following equations are taken from [5] and [6]. Let xm ∈ Rp, m = 1, . . . ,M be a set of

“clean” input vectors, like in our case the leftmost slice of figure 3.3 could be considered

as the low frequency portion of x29, a “grand piano” sound to train our pitch classifier.

And let x̃k
m, k = 1, . . . , K be a set of K distorted versions for each xm. The remaining

slices 2-5 of figure 3.3 represent four distorted versions of x29, in particular x̃5
29, x̃

8
29, x̃

12
29

and x̃14
29. The same note C3 played on the 4 different “General MIDI” (GM) instruments

electric guitar, violin, trumpet and soprano sax. Note that a vector xa and all of its

distorted versions x̃k
a are parts of the same class a here.

It is reserved to the user to determine how many of the OPCA output vectors are

necessary and sufficient. This choice depends largely on the particular problem. For

example the SAF system uses a 64 dimensional feature space representing 6 s of audio,

our best found pitch classifier so far needs around 40 dimensions, the instrument detector

almost 80 dimensions representing only 70 ms of audio. As mentioned earlier the number

of eigenvalues is equivalent to the dimension of the feature space. Of course we want to

reduce dimension as much as possible without loosing too much information.

If there is no real test environment available yet the sizes of the corresponding eigen-

values might help to make an initial guess of how much information is captured by a

certain portion of eigenvectors. Figure 3.4 shows the computed eigenvalues (red) from

equation 3.6 which represent, together with their corresponding eigenvectors, the output

13



Figure 3.4, created by the tool “evalFiT” [2],

shows the first stage eigenvalues of our trained

pitch classifier arranged by size (The term first

stage will be explained in the next section).

Most of the information is comprised within the

first 60 projections.

Figure 3.4: Scaled first stage eigenvalues

of our pitch classifier training. If we consider the scaled accumulated eigenvalues (green)

to be an information content measure, one could state that the projections along the

first 40 eigenvectors capture about 50 percent of information. And hopefully not any 50

percent but rather the most useful 50 percent for our task.

3.5.3 Instrument and pitch class separation

Of course even an unsupervised training method like OPCA needs sensible training data

to produce expedient results. We separate instrument and pitch detection (as mentioned

earlier) because both classifiers require some sort of contradictory training. Our pitch

classifier utilizes a “clean” training set out of our large sound database consisting of 64

different notes which represent about five scales played on one single instrument. Its

“distorted” versions are made up of the same 64 notes played on a different instrument

for each distortion. At this point we deviate from the original SAF/DDA system. They

distort the clean signal in the literal sense by the use of audio processing tools. We do

have this possibility too of course, but since in our case a MIDI File is available for each

training set we are able to apply distortions like a (real) “transpose” or an instrument

change, which is ordinarily unfeasible. The MIDI format provides even more distortions.

Some possible extensions are mentioned in the last chapter of this thesis.

A direct way to illustrate the “quality” of the training results already applied to some

test data is shown in figures 3.5 and 3.6. Three pairwise disjunct projections along the

first four trained eigenvectors are shown. Let ni be the resulting eigenvectors of our

pitch classifier training and ı the demeaned log spectrum of the input data, the lower

left partition of figure 3.5 is generated by
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Figure 3.5: OPCA pitch class separation. The multi-coloured dots represent 3 different
notes (green: C3, blue: A2, red: D#4) played on 50 different GM instru-
ments. The projection along the first eigenvectors of our pitch classifier
obtains a conspicuous separation.

x =< n1, ı > y =< n2, ı >

with the origin right in the middle The green dots represent the same note (C3 again)

played on 50 different GM instruments. The blue and red ones represent the notes a3

and dis4 played on the same 50 instruments. It can be seen that the OPCA directions

of the pitch classifier separate the different pitches much better than the instrument

classifier on the other hand. In fact the different pitches are really mixed up in the upper

“instrument” trained row. And that’s exactly how it should be, because the instrument

classifier should be tolerant against different pitches.

This is achieved by the use of a “clean” training set for the instrument classifier con-

taining one note played subsequent on many different instruments and their distortions

to be transposed versions of the clean file. Figure 3.6 shows the trained classifiers from

figure 3.5 applied to different test files with only three instruments (green: Acoustic

Grand Piano, blue: Electric Guitar, red: Fretless Bass) each playing 50 different notes.

The instrument class separation of the first two dimensions is not as obvious as before,

we could forebode that the instrument recognition task might be the more difficult.
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3.6 Multiple stages

The DDA algorithm proposes the application of multiple subsequent OPCA projections

(stages). The following section should illustrate how and why this is done. Figure 3.7

shows the hierarchic structure of the DDA system. OPCA is used twice, first directly

on the audio log spectrum of a narrow temporal window, then the congregated output

of the first stage is used again as the input of the second stage.

In this way the output of each succeeding stage comprises information about a broader

temporal range than its predecessor. Of course we could make even a single stage OPCA

to see a wider temporal window by simply reducing the resolution in the time domain

(e.g. take the mean of two or more adjacent Gabor windows in the time-frequency plain).

This is always possible of course but it’s accompanied with a severe and unjustified loss

of temporal information. For our problem as well as for the SAF task it’s not sufficient

to observe the spectral energy distribution at a certain time, even more important are

it’s changes over time. These temporal changes again could be taken into account by ag-

gregating subsequent log spectrum vectors and solve the generalized eigenvalue problem

directly.

The only equivalent alternative for the two stages in figure 3.7 would be to apply OPCA

directly to an 2048 · 33 = 67584 dimensional input vector. That in turn would lead to

67584× 67584 covariance and correlation matrices and therefore the eigenvalue problem

Figure 3.6: OPCA instrument class separation. The multi-coloured dots represent 50 dif-
ferent notes played on 3 different GM instruments (green: Acoustic Grand
Piano, blue: Electric Guitar, red: Fretless Bass). The projection along the
first eigenvectors of our instrument classifier obtains a conspicuous separa-
tion.
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Figure 3.7: Structure of the original DDA system used for SAF, taken from [6]. The first
OPCA projection is applied on the 2 ·2048 = 4096 dimensional log spectrum
input vector, producing a 64 dimensional output vector. 32 aggregated out-
put vectors of the first stage again serve as an input of the second OPCA
projection. The dimension of the original input space is significantly reduced
by the application of two subsequent OPCA projections by a factor of 2048
in this case.

infeasible to solve. It is however an alternative for our comparably low dimensional input

space and a small temporal window. But even in lower dimensions the use of multiple

stages significantly reduces the computational effort in both training and test phase.

Figure 3.8 in turn shows the architecture of our two stage OPCA pitch classifier. The

dimensions are a smaller of course since our task is not to identify whole songs of a few

minutes length. We have to detect exactly not just whether a note is present or not,

but rather its accurate beginning and end. And such events might occur within a few

milliseconds. With the setup of figure 3.8 we are able to analyse a temporal window of

68 ms every 17 ms. The resolution in the frequency domain (see subsection 3.3) is about

11.7 Hz (from 0 to 4 kHz), which leads to a log spectrum vector of length 340 every

17 ms. This dimensionality is reduced by a factor 10 after the first OPCA projection.

Then 4 subsequent feature space vectors of the first stage are aggregated to build the 136

dimensional input of the second stage, which again reduces dimensionality by a factor

of 3.4. That makes an overall dimensionality reduction by a factor of 34. The described

pitch classifier parameters lead to good results on our first simple test examples together

with a relatively large dimensionality reduction.
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Figure 3.8: The architecture of our best found two stage pitch classifier so far, adapted
from [6]. The first OPCA projection is applied on the 340 dimensional log
spectrum input vector, producing a 34 dimensional output vector. 4 aggre-
gated output vectors of the first stage again serve as an input of the second
OPCA projection. The dimension of the original input space is significantly
reduced by the application of two subsequent OPCA projections by a factor
of 34 in this case.

3.7 Test requirements

At this point we are able to implement a little test environment for our OPCA trained

pitch estimator. Some parts of our test set-up have been described earlier like the struc-

ture of our training subset or the OPCA architecture used for training. The remaining

required components will be described in this section.

3.7.1 Parametric representation

First of all, to be able to test anything we need some sort of parametric representation

of our audio test set which tells us what notes and instruments are present at a certain

point of time. What is more obvious than the use of MIDI files for that purpose. For the

convenient handling of MIDI files we use the c++ MIDI library libjdkmidi [18] together

with some supplement classes to extend it’s functionality and to work around one or two

minor or major “bugs”. To automatically create our training and test MIDI files again

we use an own parametric representation like

instruments 0-79,81,83-95,104-119 | notenumbers 60 | velocities 111 | durations 173 | intervals 273
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for example to create our instrument classifier training MIDI file. The syntax is very

simple but sufficient for our task. The tool “buildDatabase” creates a standard MIDI

format “0” (i.e. all instruments share one single track) file containing only MIDI note

number 60 played consecutively by 110 General MIDI instruments with velocity of 111

and duration of 173 ms. For each duration, the corresponding interval donates the time

between to succeeding Note ONs. For all the remaining tests we use only these 110

out of the 128 instruments in the GM soundset. Why just 110? We abandon some

“instruments” like applause or helicopter which are in fact no real instruments but just

noise. The instruments 80 and 82 (“Lead 1 (square)”and“Lead 2 (calliope)”) are omitted

because during our tests they paradoxically have been “found” very frequently by our

instrument classifier although not being present at all. After the corresponding MIDI

file has been created the parametric representation above is not used any more because

all the information can be gathered out of that MIDI file.

3.7.2 MIDI2Audio

The generated MIDI files are then converted into audio files using the versatile tool

timidity [32]. By the use of high quality soundfont files [31] timidity is able to produce

more than satisfying results. And that’s quite important for our task, since on “low

end” hard- or software synthesizers most of the instruments sound the same and more

or less artificial. That of course aggravates the instrument recognition both for human

and “digital” listeners.

3.8 First test example: “Brother John”

Figure 3.9 shows the original score of the famous round “Brother John” which serves as

our first test query. The green color donates GM instrument 0, the “Acoustic Grand

Piano”.

The sound database has the following configuration

instruments 0-79,81,83-95,104-119 | notenumbers 32-95 | velocities 95 | durations 446 | intervals 546

and consequently consists of 110 different GM instruments each subsequently playing

64 notes with velocity 95 and a duration of 446 ms. The interval between successive notes

is 100 ms (546-446 ms). We restrict our initial sound databases to be monophonic for

all the following tests because even for the simple case of two parts it’s nearly unfeasible

to build a sound database with all possible note combinations. Nevertheless we tried
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Figure 3.9: The score of the traditional french nursery rhyme “Brother John”

something like that for the special “two parts of one single instrument” (Acoustic Grand

Piano) case and the definitely encouraging results motivated our so called “Replica-

Comparison” approach (see section 6.2).

Figure 3.10: The test result of our pitch classifier, obviously still “Brother John”. The
process of pitch is almost perfectly reconstructed but even though our test
database contains every note present in the query file played by exactly
the same instrument (Acoustic Grand Piano) our nearest neighbour search
finds wrong instruments in about 60% of the slices

Figure 3.10 shows our first test result of our pitch classifier. Different colors stand

for different instruments. How is this result produced exactly? We applied a simple

“per slice” nearest neighbour search through our instrument database. The step width

of the first stage (i.e. 17 ms in that case) will be referred as “slice” from now on. What

we actually compare during our nearest neighbour search is the L2-Norm (or Euclidean

Distance) between a query feature vector (which will be referred as “query fingerprint”

below) and all precalculated database fingerprints defined by
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distance(~f q, ~fdb) = ||~fdb − ~f q||L2 =

√√√√ d∑
i=1

(~fdb
i − ~f q

i )2 (3.7)

Finally the database slice with the lowest Euclidean Distance to the query slice is

considered as a match and it’s note and instrument is added to the score replica. A few

remarkable observations can be made even from that simple test example. It can be seen

that the process of pitch is almost perfectly reconstructed. A more or less surprising

fact is that even though our test database contains every note present in the query file

played by exactly the same instrument (Acoustic Grand Piano) our nearest neighbour

search finds wrong instruments in about 60% of the slices. The projections of the found

instruments are very close (i.e. small Euclidean Distance) to each other so our pitch

classifier is more tolerant to instrument change than to different phase alignment that

might occur in this case. A test result of our instrument classifier is presented right before

the parameter tuning chapter in section 4.6. Another annoying problem is visible too.

The two pairs of subsequent notes number 67 in the last third of the excerpt are merged

together with each other and only two notes instead of four are actually recognized.

The problem of detecting repeated notes is, apart from octave errors (see chapter 8) the

second major cause of transcription errors, especially for polyphonic transcription [22].

The results so far are summed up in the following table.

querying time 400s
pitch accuracy 96.4%
(instrument accuracy) 40.6%

Table 3.1: The accuracies of our first pitch classifier.

3.9 Indexing bridge

Through the rest of this thesis we will come step by step closer to the goal of polyphonic

music transcription. But before we are able to run any further tests we have to find a

way to speed up the database search. Our simple 18s “brother john” test example needs

about 400s for nearest neighbour search on a 1GHz Notebook. Even with a relatively

small sound database of about one hour (64 min.) nearest neighbour search requires

18s

0.017 s
slice

× 3840s

0.017 s
slice

≈ 239million (3.8)
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L2-Norm calculations of two 40 dimensional feature space vectors with a slice length

of 17 ms. Although calculation time could be reduced by the use of a high end multi

core system it is still unacceptable for further tests with a larger multi-velocity database

and various polyphonic test queries with higher durations, which often require some sort

of “multi-pass” search. The next chapter illustrates one technique to reduce the search

space significantly by the use of a precomputed bit vector index.
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Chapter 4

Redundant Bit Vector Indexing

After the first nearest neighbour search tests with its quite moderate elapse time an

important subgoal is to speed up the database search. This chapter will describe an

indexing technique proposed by Jonathan Goldstein, John C. Platt and Christopher

J.C. Burges [12, 13] based on the use of bit vectors. The same technique was applied

successfully for the SAF task. How suitable is such an indexing in association with our

sound database? The remainder of this chapter will comment on that as well, starting

with a short recapitulation of our search problem.

4.1 Problem redefinition

Figure 4.1: Simple nearest neighbour search. A two dimensional representation of three
database entries and two queries, adapted from[12].

Simple nearest neighbour search finds the database slice with the minimal Euclidean

Distance to an unknown query slice.
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mindb||fdb − f q||L2 (4.1)

Both query und the database entries are referred as points in our high dimensional

feature space below. Even though such a database point with minimal Euclidean Dis-

tance exists for every query point, the corresponding slices might not be related at all.

We want our search to return “not found” in these cases. Therefore it is necessary to

apply a certain threshold to our search result in order to decide whether a database slice

could be considered as a real match or not.

mindb||fdb − f q||L2 < c(db) (4.2)

Instead of starting with nearest neighbour search, the threshold of equation 4.2 could

be applied directly as the radius of a high dimensional hypersphere around each database

point in feature space. This problem again could be formulated very similar as follows.

mindb(||fdb − f q||L2 < c(db)) (4.3)

We perform nearest neighbour search now only on a subset of the original database

entries which satisfies the condition that the query point lies within a hypersphere with

radius c around the database point. The fact that the database entries may have different

hypersphere radii explains the varying results compared with simple nearest neighbour

search.

Figure 4.2: Different“hyperspheres”. A two dimensional representation of three database
entries with different hypersphere radii, adapted from [12].

Figure 4.2 shows three database entries with different acceptance thresholds. A setting

like in figure 4.3 would reject database entry 2 to be a match for query 1 although their

Euclidean Distance is obviously smaller than that of query 2 and database entry 3.
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4.2 Hypercube apology

Unfortunately the search based on 4.3 is not really faster than simple nearest neighbour

search since we still need as many L2-Norm computations to test precisely if a query point

lies within the boundary of a certain hypersphere. But the underlying idea of truncating

our search space turns out to be useful if we could substitute this hypersphere term

with something similar and less expensive. Goldstein et al.[12][13] suggested the use of

hypercubes or more precisely hyperrectangles for that purpose.

Figure 4.3: Circumscribing “hypercubes”. The three different hyperspheres of example
4.2 together with their circumscribing hypercubes, adapted from [12].

Figure 4.3 shows the same “hyperspheres” as figure 4.3 together with their circum-

scribing “hypercubes”. Circumscribing hypercubes unfortunately will increase the false

positive rate. Since we want to reduce the search space as well as the false positive rate

we are interested in the use of hypercubes with smaller side lengths.

Figure 4.4: Tight “hypercubes”. If we choose the hypercube side length too tight we
might introduce even more false negatives like query 2 in this case, adapted
from [12].
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Figure 4.4 shows some tighter “hypercubes”. If the side length of the hypercubes are

chosen too tight, many possible matches might be rejected, like query 2 in this case. For

our 2 dimensional representation it can be easily shown that the leftmost tight hypercube

for example encloses only about 64% of its circumscribing hypersphere. This fraction

increases together with search space dimension.

Figure 4.5: Fraction of unit hypersphere covered by a hypercube, taken from [13]. The
corresponding circumscribing hypercube would have a side length of 2.

In the case of a 40 dimensional feature space for example figure 4.5 shows that if we

substitute hyperspheres by tight hypercubes of side length ≈ r they comprise about 95%

of the corresponding hypersphere without introducing any false positives.

4.3 From hyperrectangles to bit vectors

The usage of tight hypercubes instead of hyperspheres or circumscribing hypercubes has

two main advantages. First we are able to make a dimension-wise decision whether a

query point lies within a certain hypercube or not. Needless to say that we still have to

check all dimensions to ensure that a query point really lies inside a certain hypercube

but only one single dimension may be sufficient to negate that. In the second place the

dramatic savings in volume by utilizing tight hypercubes will reduce the number of false

positives as well as the search time [13]. How do we get from hypercubes to a bit vector

index?

What we actually try is to sift out as many inapplicable database entries as possible

with the help of a dimension-wise comparison. Figure 4.6 shows the projection of six

database hyperrectangles and a query point along one OPCA output vector (i.e. one
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Figure 4.6: Database hypercubes and query point projected along one dimension,
adapted from [13]. The projection of the query point lies in bin number
2, which “eliminates” the database entries 2, 4, 5 and 6.

dimension of the feature space). This dimension is partitioned again into a fixed number

of bins (i.e. precomputed intervals with a similar Hamming distance [13]). During the

indexing phase a bit vector for each bin and each dimension is generated containing one

bit per database entry indicating if the corresponding hyperrectangle overlaps or not.

Figure 4.7: Resulting bit vectors of example 4.6, taken from [13]. The second bit vector
indicates that only the database entries 1 and 3 are qualified to be a possible
match of our query.

Figure 4.7 shows the resulting bit vector index of example 4.6. The second bit vector

for instance pinpoints that bin number two is overlapped by the database hyperrectangles

one and three. That on the other hand clarifies the other database entries to be ineligible

as a possible counterpart for our query. The use of bit vectors for indexing enables us

to create comparably small index files with about half the size of the corresponding

fingerprint file by the use of 32 bins per dimension. We implemented pseudo code

“Algorithm 2 Building the Redundant Bit Vector index” from [13]. The computed bit
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vectors can be stored together with the corresponding fingerprint database for later use.

4.4 Fast querying

Algorithm 1: Querying the Redundant Bit Vector index [13]

Require: Database of N items/distributions, Bit vector index B, Bin edge array E, hi
and lo arrays, number of indexed dimensions I, query vector x

j = smallest index such that x1 < E1j

for i = lo[j] to hi[j] do
Ci = B1ji

end
for k = 2 to I do

j = smallest index such that xk < Ekj

for i = lo[j] to hi[j] do
Ci = Ci & Bkji (once every machine word)

end
end
forall i such that Ci = 1 do

if x ∈ itemi then
Finished

end
end
If no item found, return empty

Let’s have a brief look at the querying pseudo code. The bit vector index B is generated

like in figure 4.7. The bin edge array E contains the bin boundaries for each bin within

each dimension and the number of indexed dimensions I is equal to the dimension of

our search space (feature space). The centerpieces of the querying algorithm are the

repeating AND operations (red) on the appropriate bit vectors. Herein lies the strength

of that kind of index. The required bitwise AND operations of 32 bit data words (in our

case) can be computed very efficiently on modern 32 or 64 bit machines.

4.5 Indexing speed up

Are you sleeping?, are you sleeping?, a bit vector once questions its simple “brother”

nearest neighbour search. Remember our first test example 3.10 with a search time of

400s? We now applied the described bit vector indexing technique and the consequent

speedup is not to be sneezed at. We used exactly the same test setup with our small
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64 min. sound database and the 18s monophonic (grand piano) test file “Brother John”.

The only tunable indexing parameter is the relative hyperrectangle side length.

Figure 4.8: The bit vector index test result, “Brother John” again

The initial hyperrectangle side length of each database entry is designated during

indexing phase to be the mean Euclidean Distance to 100 different evenly distributed

database entries. Due to a normalization step which is applied to each OPCA output

vector after the training phase (see [2] for further information) we are able to apply the

same side length for all the dimensions of our feature space. That circumstance again

degenerates our hyperrectangles to hypercubes.

These initial side lengths are multiplied by a global parameter which will be referred

as indexing threshold, or simple threshold below. For the case of a monophonic test

file the indexing threshold can be selected very “tight” to extremely reduce querying

time without introducing too many false negatives. In this case we choose an indexing

threshold of 0.2 which leads to the following results.

nearest neighbour bit vector index
indexing time n/a 70s
querying time 400s 4s
pitch accuracy 97.0% 96.7%
(instrument accuracy) 42.0% 41.9%
search space reduction n/a 99.7%
nearest neighbour found 100% 93.3%

Table 4.1: The accuracies of our first indexing test.

The term “pitch accuracy” stands for simple per slice pitch accuracy. Notice that the

result of our index query algorithm is not a single database entry but a small subset of

the original search space. Simple nearest neighbour search is applied to that subset to

find the candidate with the nearest Euclidean Distance to the query slice. Even with
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that appended nearest neighbour search we achieve a speedup by the factor of 100 due

to a search space reduction of more than 99% by the use of the bit vector index. Note

that the “indexing” step normally has to be done only once for each database change.

4.6 Parameter tuning bridge

As promised in section 3.9 we now present the result of our first instrument classifier

test. Figure 4.9 indicates a slight improvement of instrument accuracy in comparison

with our pitch classifier results. Here the correct pitches are only a side effect of the

instrument recognition. In this case we choose a less tight indexing threshold of 0.4

which leads to the following results.

Figure 4.9: The test result of our instrument classifier. Even though our test database
contains every note present in the query file played by exactly the same
instrument (acoustic grand piano) the search finds wrong instruments in
about 50% of the slices. This result does not touch on the accuracy of our
pitch classifier.

nearest neighbour bit vector index
indexing time n/a 76s
querying time 440s 8s
(pitch accuracy) 80.5% 80.0%
instrument accuracy 47.8% 47.5%
search space reduction n/a 99.1%
nearest neighbour found 100% 97.1%

Table 4.2: The accuracies of our first instrument classifier.

In general all the instrument recognition tests require more tolerant indexing thresh-

old values, mainly because a considerably larger feature space dimension (see chapter
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5). These first instrument test results are not encouraging at all since the instrument

accuracy is not much better than that of our pitch classifier. Both are of course not

comparable at all due to their contrasting nature but to be honest we had expected

substantial better results which are again necessary to even think of some sort of multi

instrument search. The following chapter attends to that. We try to improve especially

the instrument recognition with the help of automatic parameter test routines.
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Chapter 5

Interlude - parameter tuning

Per slice pitch and instrument accuracy will serve us as a quality measure for this “pa-

rameter tuning” chapter to determine sensible OPCA training parameters for further

experiments.

Figure 5.1: Basic OPCA tuning parameters; the underlying spectrogram represents the
entire of Beethoven’s “Für Elise”

Figure 5.1 shows some basic OPCA tuning parameters that are necessary to under-

stand the following plots. Some other parameters like the used percentage of OPCA

eigenvectors have been mentioned earlier. Each of them may be more or less relevant

for our task. We start with a short description of each parameter.

• fMin, fMax The minimal and maximal frequency to analyse. Works like a band

pass filter. Frequency portions below fMin and above fMax are ignored.
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• bover The frequency resolution in Hz. Within the plot’s keys there is talk of the

actual OPCA parameter bcrit. For further information on the relation between bcrit

and bover see [3]. For simplicity the equation bover = bcrit√
5

holds for the actual mmca

implementation [2].

• aover The corresponding resolution in the time domain. It depends, according to

Heisenberg’s uncertainty principle, on the resolution in the frequency domain, in

particular bover. For this reason it is sufficient to define only one tuning parameter

bcrit in our case. aover in s is derived from bcrit by aover = 1
bcrit·

√
5
. The scalar

value 5 here and above is an empirical determined oversampling factor [3]. aover is

hereinafter referred as step width or slice length.

• duration The number of aggregated frequency / feature space vectors examined

during one step of single / second stage (see section 3.6).

• Percentage CoeffsOut, No CoeffsOutCount The relative and absolute num-

bers of OPCA output vectors (see section 3.5).

The remainder of this chapter tries to reveal the most significant parameters together

with their favorable values. What we actually try is a multiparameter optimization by

varying one single parameter and fixing all others. We use again a sound database with

the configuration

instruments 0-79,81,83-95,104-119 | note numbers 32-95 | velocities 95 | durations 446 | intervals 546

and two different test sets for instrument and pitch detection. The pitch test set

consists of 9 selected instruments playing the notes from note number 36 to 95 in reverse

order.

notenumbers 95-36 | instruments 72,64,56,48,40,32,24,16,0 | velocities 95 | durations 73 | intervals 273

Like in our sound database the changes of pitch dominate.

The instrument training set on the other hand is made up of the same sounds, but

now, to raise the severity, we change the instrument every quarter second.

instruments 72,64,56,48,40,32,24,16,0 | notenumbers 95-36 | velocities 95 | durations 73 | intervals 273

One may wonder about the quite bizarre interval boundaries of 273 ms. They are

just a leftover from previous experiments. Once we attempted to align especially the

intervals of the training set exactly to the corresponding slice lengths. But further tests
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confirmed the futility of these efforts. Needless to say that we can’t expect real music

test examples are aligned to anything at all. That means that even an interval of 200

ms or 300 ms doesn’t make much difference.

The following parameter plots are created with an indexing threshold (i.e. the relative

hypercube edge length 4.2) of 0.9 and above to avoid corruptions due to a too restrictive

indexing. Various tests indicated that such a high indexing threshold is needed even

with monophonic test examples if we chose a higher fMax or a lower bcrit value, which

both increases the search space dimension.

5.1 Indexing threshold

Figure 5.2: Per slice instrument and pitch accuracy under the variation of the global
indexing threshold (i.e. the relative hypercube edge length). Instrument
and pitch recognition are separated and their corresponding eigenvalues are
trained with two different training sets (see section 3.5.3) and parameters (on
the right). It is obvious that we have to choose a higher threshold around
0.3 for our instrument classifier to perform well. The pitch classifier settles
for a value of around 0.2.
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5.2 Minimal and maximal frequency

Figure 5.3: Per slice instrument and pitch accuracy under the variation of the minimal
frequency (fMin). fMin is in fact of minor importance, just brought up for the
sake of completeness. But it is worth mentioning that instrument accuracy
(even though innately poor) stays almost constant. This could be of use to
ignore low frequent distortions.

Figure 5.4: Per slice instrument and pitch accuracy under the variation of the maximal
frequency (fMax). The prudent choice of fMax is of high importance, because
it has a direct influence on the number of output dimensions and consequently
on search complexity and duration. Having regard to all of the previous tests
we choose a maximum frequency of 6000 Hz for the pitch estimator and 8000
Hz for instrument training.
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5.3 Lattice constant and duration

Figure 5.5: Per slice instrument and pitch accuracy under the variation of the lattice
constant (bcrit), the most important tuning parameter of G. v. d. Boogaart’s
fast Gabor transformation implementation [2]. The sharp decline of instru-
ment accuracy near the bcrit value of 5.732 is a consequence of a too tight
indexing threshold. A fixed (thus high) indexing threshold don’t get along
with an accrual of the search space dimension from 81 to 936(!). For the sake
of simplicity we choose the same bcrit value of 19.653 for pitch and instrument
recognition (note that this is a requirement of the actual implementation).
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Figure 5.6: Per slice instrument and pitch accuracy under the variation of duration, the
number of aggregated frequency / feature space vectors examined during
one step of single / second stage (see section 3.6). The sharp decline of
instrument accuracy near the duration value of 9 is a consequence of a too
tight indexing threshold. A fixed (thus high) indexing threshold don’t get
along with an accrual of the search space dimension from 181 to 1089(!). We
choose a duration value of 4 for pitch training and a duration value of 3 for
the instrument case.

5.4 Used percentage of eigenvalues

Figure 5.7: Per slice instrument and pitch accuracy under the variation of the used per-
centage of eigenvalues of the first stage. We again choose as little as possible
and as much as is necessary to minimize the dimension of the search space.
Further tests revealed that values of 0.15 and 0.25 for pitch and instrument
training are sufficient.
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Figure 5.8: Per slice instrument and pitch accuracy under the variation of the used per-
centage of eigenvalues of the second stage. We again choose as little as
possible and as much as is necessary to minimize the dimension of the search
space. Further tests revealed that values of 0.3 and 0.4 for pitch and instru-
ment training are sufficient.

5.5 Final parameter configuration

Figure 5.9: Our final training parameter configurations. We will use 2 stages for all
further experiments
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5.6 Signs of improvement ?

Figure 5.10: The result of our parameter tuned instrument classifier, ultimate “Brother
John”

In this case we choose a less tight indexing threshold of 0.4 which leads to the following

results.

nearest neighbour bit vector index
querying time 130s 2s
(pitch accuracy) 88.4% 78.7%
instrument accuracy 51.3% 52.0%
search space reduction n/a 99.7%
nearest neighbour found 100% 71.9%

Table 5.1: The accuracies of our tuned instrument parameter configuration.

After these again unsatisfying results we had the faint suspicion that the Acoustic

Grand Piano might not be the best GM instrument to start with. Further tests will

show that the recognition rates are highly instrument dependent (see section 8.2.1) and

that there is a typical confusion between the Acoustic Grand Piano and other instruments

out of the same group (see section 8.2.2).

If we have a look an the “wrong” found instruments in this particular case, we count

the Bright Acoustic Piano with 21% and the Honky-tonk Piano with 15%. That makes

a total recognition rate of 88% if we only count for the instrument group. Is the Acoustic

Grand Piano in comparison with other GM instruments rather easy to identify or not?

Section 8.2.1 will give an answer.

It is noticeable that only 71.9% of the nearest neighbours were found but instrument

accuracy has increased! And one of our prior assumptions has proven false. There is no

improvement of the instrument recognition rate near the note attacks.
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Chapter 6

Thinkin’ polyphonic

After this diverting parameter tuning chapter it is time for a short recapitulation of our

insights gained so far. Our instrument database approach suits well for the transcription

of monophonic melodies with a per slice accuracy of better than 90% (see table 3.1).

And together with an appropriate indexing technique we achieve a high speed up of our

database search by a factor up to 100 (see table 4.1).

The first instrument recognition results, in contrast, fall short of our expectations.

Even though we set the stage for good recognition results by using exactly the same

sampled instruments for our database and the test queries the results do not touch on

the pitch accuracy at all. For this reason we disregard instrument recognition for the

moment and concentrate on polyphonic piano transcription cherishing the hope that the

results can compete with other implementations.

The remainder of this chapter focuses the problem of transcribing polyphonic (piano)

music with the help of a monophonic instrument database. We will discuss two basic

approaches. First a quiet old idea called LOG-MAX approximation and then a second

promising strategy which is reserved to our particular implementation. We try to make

the most of our instrument database by creating some sort of frugal audio “replica” of

the query and perform a second search among this “ad hoc database”.

6.1 LOG-MAX approximation

First tests revealed that even with our wretched monophonic sound database we are

able to achieve a “first pass” per slice pitch accuracy of 65% to 95% for polyphonic piano

compositions (D.1). In other words we are able to identify one note present per slice

between (many) others quite well. That of course is an essential prerequisite for all

further actions.
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Figure 6.1: The resulting score of a simple “next candidate” search with a fixed upper
limit of 5 search iterations on the right together with the original score on
the left. A two-handed piano version of the theme from “Schindler’s List”.

The straightforward proceeding would be to take the first note found for granted and

search for the second most possible note. Without an a priori knowledge of the number

of simultaneously present notes we have to assign an upper limit for the search iterations

by hand. Figure 6.1 shows the resulting score of a simple “next candidate” search with

a fixed upper limit of 5 search iterations on the right together with the original score on

the left. The resulting per slice accuracies are shown in table 6.1.

Although the theme of“Schindler’s List”, which we choose as our second demonstrative

example, is again not really complicated several observations are noteworthy. Simple

nearest neighbour search has a significantly higher (almost double) second pass pitch

accuracy. Note that the query starts monophonic. The second voice joins at about

35 seconds. So the maximum possible (absolute) pitch accuracy of the second pass is

something around 40%.

nearest neighbour bit vector index(*)
querying time 250s 6s
pitch correct / incorrect correct / incorrect
first pass 98.9%/1.1% 96.8%/1.4%
second pass 22.0%/78.0% 13.0%/61.8%
third pass 4.6%/95.4% 1.8%/57.9%
fourth pass 2.7%/97.3% 1.2%/45.1%
fifth pass 0.7%/99.3% 0.5%/37.8%

Table 6.1: The accuracies of a simple “next candidate” search with a fixed upper limit
of 5 search iterations. (*shown in figure 6.1)
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A quite perturbing fact is the very high false positive rate of both, nearest neighbour

and index search. It is not surprising because we “force” both to search for (different!)

pitches which are not present at all. It lies in the nature of the indexing implementation

to be able to return “not found” if the querying step of the bit vector index returns an

empty subset of the search space (see pseudo code 1). That’s why the accuracies of the

bit vector index column don’t sum up to 100%.

These far too high false positive rates together with an unsatisfying second pass ac-

curacy will probably lead to a lousy transcription, at least without expensive postpro-

cessing. One strategy to overcome both problems is to customize the indexing step to

search only through that dimensions of the feature space which are not “caused” by the

notes found so far. What does the term “caused” mean exactly ?

6.1.1 Sparseness of musical signals?

As mentioned already in the sections 3.3, 3.4 and 3.5 what we actually analyse (compare)

is a (repeated) linear projection of the log spectrum of the primary audio signal. If two

different notes are present at the same time, the resulting spectrum of that mixture is

equal to the sum of the two single note spectra. Unfortunately this does not hold for

the log spectrum which again is an imperative necessity for the OPCA 3.5. But Roger

Moore noted first in 1983 that an approximation exists for the logarithm [29].

Figure 6.2: “Relationship between the log of sums and the max of logs” of two clean
speech signals, taken from [29]. This approximation makes use of the sparse
nature of speech across time and frequency. The relative energies of two
simultaneous speakers in a narrow frequency band are shown on the right.

Figure 6.2 shows the “relationship between the log of sums and the max of logs” [29]

of two clean speech signals.
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log(e1 + e2) ≈ max(log(e1), log(e2)) (6.1)

This approximation makes use of the sparse nature of speech across time and frequency.

The relative energies of two simultaneous speakers in a narrow subband are shown on the

right. The few points on the diagonal indicate that it is unlikely that two independent

speakers contribute substantial energy into the same frequency band at the same time

[29]. Equation 6.1 holds only if e1 and e2 are both neither large nor equal. What about

our music signals, or more precise the mixture of different notes? Can we make the

assumption that they are equally sparse?

Figure 6.3: The resulting score of a random dimension search (left) and a “LOG-MAX”
search (right) with a fixed upper limit of 5 search iterations. No real visible
improvement to our first search result in figure 6.1, but the corresponding
table shows a change for the better.

random dimension “LOG-MAX”
querying time 62s 41s
pitch correct / incorrect correct / incorrect
first pass 96.8%/1.4% 96.8%/1.4%
second pass 13.5%/75.0% 23.5%/66.1%
third pass 3.0%/82.3% 2.4%/79.2%
fourth pass 1.7%/82.4% 0.9%/73.5%
fifth pass 0.8%/82.8% 0.3%/70.2%

Table 6.2: The accuracies of random dimension search (left) and a “LOG-MAX” search
(right) with a fixed upper limit of 5 search iterations.

We have to make precise distinctions between the different assumptions which are

associated with the LOG-MAX approximation. As distinguished from speech different
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sources of a musical arrangement are strictly synchronized through the use of a common

measure. Professional musicians are, just like a numb synthesizer, anxious to keep the

current tempo and to attack at exactly the same time. Moreover the energy distribution

melody instruments is not even sparse across time at all. The energy of a single note

remains almost constant in a (narrow) frequency band, except for the attack phase.

Algorithm 2: Refined bit vector index querying algorithm, [13]. Changes to algo-
rithm 1 are highlighted in green (polyphonic search), blue (ignoring dimensions) and
red (termination criterion).

Require: Database of N items/distributions, Bit vector index B, Bin edge array E, hi
and lo arrays, number of indexed dimensions I, query vector x, maximum
number of iterations M , an empty set of found notes F , an empty set of
ignored dimensions D and an I-dimensional vector ~facc

for m = 1 to M do
j = smallest index such that x1 < E1j

for i = lo[j] to hi[j] do
Ci = B1ji

end
for k = 2 to I do

if i /∈ D then
j = smallest index such that xk < Ekj

for i = lo[j] to hi[j] do
Ci = Ci & Bkji (once every machine word)

end
end

end
forall i such that Ci = 1 do

if x ∈ itemi and x /∈ F then
if ||~facc − ~f q||L2 < ||m̃ax(~facc, ~fdb)− ~f q||L2 then

stop search
end
Add x to F

end
end
for k = 2 to I do

if ~fdb
i < ~f q

i then
Add i to D

end
end
~facc = m̃ax(~facc, ~fdb)

end

It seems that the LOG-MAX approximation is not really applicable to our music

transcription task. So why should we advocate this strategy? One reason is that a
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mixture of different(!) notes is at least sparse across frequency provided that they do

not share too many harmonics. Another reason are the persuasive test results. Figure

6.3 shows the resulting score of an iterative indexing search with a maximum of one third

randomly chosen dimensions ignored per iteration an the left. The score on the right

is originated ignoring the dimensions designated by the “LOG-MAX” approximation.

What does the term “ignore” mean?

As mentioned before we want to concentrate on those dimensions which are not caused

by one of the notes already found. The “LOG-MAX” approximation is thereby applied

as follows. Consider the refined querying algorithm 2. All the dimensions in D are

ignored because their absolute values (i.e. the projection of the query vector along the

corresponding eigenvector) is explained by a note previously found. Here the < operator

is a short form of

a < b =

 abs(a) < abs(b) : if a · b > 0

false : otherwise

because a simple “less than” operator is not applicable for the case of signed vector

elements.

6.1.2 Termination criterion

The LOG-MAX approximation furthermore provides the possibility to apply a termi-

nation criterion to our search. In the ideal case it reduces the number of iterations

significantly without introducing too many false negatives. For this purpose we intro-

duce a vector ~facc, which represents some knowledge about our query slice gained so

far. Apart from the set of already found notes, ~facc could be understood as a measure

of accuracy already gained, which is updated during each iteration. The m̃ax (update)

operator is in turn an abbreviation for

m̃ax(~a,~b) ≡ for all i m̃ax(~ai,~bi) =


max(~ai,~bi) : if ~ai > 0 and ~bi > 0

min(~ai,~bi) : if ~ai < 0 and ~bi < 0

~ai −~bi : otherwise

In this way the accumulated feature space vector ~facc is iteratively created out of

the found database vectors. The final termination criterion is a comparison of the L2-

Norms between two subsequent accumulated vectors and the query vector which in term
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indicates the absence of improvement within the actual iteration. This permits the

implication that there are no more notes to find and the search can be stopped.

Figure 6.4: The resulting score of a simple “LOG-MAX” search (left) and the applica-
tion of our termination criterion (right) with a fixed upper limit of 5 search
iterations. The visible improvement to our first search results is approved by
the corresponding table.

Figure 6.4 and table 6.3 both underline the usefulness of our termination criterion

derived from the LOG-MAX approximation. The number of false positives is almost

totally reduced and the accuracy of the second pass remains still comparable with simple

next candidate search.

“LOG-MAX” “LOG-MAX” & termination
querying time 41s 13s
pitch correct / incorrect correct / incorrect
first pass 96.8%/1.4% 96.8%/1.4%
second pass 23.5%/66.1% 19.6%/3.3%
third pass 2.4%/79.2% 0.3%/1.1%
fourth pass 0.9%/73.5% 0.1%/0.1%
fifth pass 0.3%/70.2% 0.0%/0.0%

Table 6.3: The accuracies of a “LOG-MAX” search (left) and a “LOG-MAX” search with
the new termination criterion (right) with a fixed upper limit of 5 search
iterations. The number of false positives is almost totally reduced and the ac-
curacy of the second pass remains still comparable with simple next candidate
search.
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6.2 Replica-Comparison

Now we introduce another promising strategy which is reserved to our particular imple-

mentation. We try to make the most of our instrument database by creating some sort

of frugal audio “replica” of the query and perform a second search among this “ad hoc

database”. In a manner of speaking, our implementation is capable to produce reliable

results if we were able to create a polyphonic database including all possible (multi in-

strument) chords. This is infeasible of course. Even for the very simple case of only two

participating instruments, a mere two voiced sound database from note number 32 (G#0)

to 95 (B5) with all possible combinations would consist of not less than 642 = 4096 dif-

ferent notes. What we actually try is to generate a relatively small polyphonic database

out of the results of a first multi pass search among our monophonic database. This “ad

hoc database” is customized to the particular query. The final transcription is created

on the basis of a single pass search among this polyphonic database.
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Chapter 7

Installation and usage

The CD contains the full source code of the audio2midi project together with some Perl

scripts to install required additional software like adbm[14], libjdkmidi[18], mmca[2] or

timidity[32].

7.1 Required software

Audio2midi has been successfully tested with IPP version 5.1, MKL version 8.1, sox

12.18.2 and flac 1.1.2.

To install the remaining required software just change to the particular directory (e.g.

“resources/adbm”) and type

./checkout

,

./make

and

(sudo) ./make install

that’s it.

7.2 Installation

Just change to the “audio2midi/src” directory and type

make
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and

make install

that’s it.

7.3 Experiments

The “experiments” folder contains a subfolder with all required data to recreate all the

experiments that can be found in this thesis. Just change to the particular directory

(e.g. “polyPiano labrosa”) and run the provided Perl script (e.g. “runPolyPianoTest”).

7.4 Tools

The audio2midi package contains a collection of quite useful tools and scripts to create

and manipulate MIDI files. A short description of each of them follows, sorted by

category.

• prepareAudioQuery is a little script containing one single sox [30] call to convert an

audio file to 48kHz and to normalize it (usage: prepareAudioQuery <source.wav>

<dest.wav>).

• timiditymidi2wav is a script which uses timidity[32] to convert a MIDI file to a

WAVE file. The two optional parameters are to transpose (e.g. -1) or to use a user

defined soundfont (“.sf2”) file. If a soundfont file is entered, the key value (e.g. 0)

is mandatory (usage: timiditymidi2wav <source.mid> <destination.wav> [adjust

key value] [soundfont file to use])

• timiditymidi2flac the same as above, uses “flac” for a lossless compression of the

output. (usage: timiditymidi2flac <source.mid> <destination.flac> [adjust key

value] [soundfont file to use])

• timidityalsastarts timidity in alsa mode to use it with other applications (usage:

timidityalsa [soundfont file to use])
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• a2mTrainFiT is a slightly modificated version of trainFiT which uses mmca [2]

to create a trained fingerprint tracer file (see the documentation of [2] for more

information)

• analyseMIDIFiles retrieves statistical information (chord and note distribution)

out of (many different) MIDI files (creates image 8.1). (usage: analyseMIDIFiles

<midifile.mid or path> [<midifile2.mid or path2> ...])

• audio2midi is the main program of our package and converts an audio file to MIDI.

Needs two trained fingerprint tracer files (see the documentation of [2] for more

information), a database audio file (together with a midi file of the same name)

and an input audio file. If there is a (identically named) ground truth MIDI file of

the input available statistical informations are displayed. The two optional param-

eters are the start and end time of the conversion in seconds. (usage: audio2midi

<instrument.FiT> <pitch.FiT> <db.wav> <input.wav> <output.mid> [start]

[end])

• buildDatabase creates a midi file from a parametric representation (see 3.7.1) (us-

age: buildDatabase <buildDatabase.cfg> <database.mid>)

• calcAccErr calculates the Overall Accuracy end the different error scores (see

8.1.1) (usage: calcAccErr <orig1.mid> <replica1.mid> [orig2.mid replica2.mid]

<startseconds> <endseconds>)

• changeInstrument changes the instrument of MIDI file (usage: changeInstrument

<input.mid> <output.mid> <instrumentNumber>)

• concatenateMIDIfiles concatenates midi files to a medley. Set seconds to 0

to concatenate the entire files otherwise only the first seconds of each file are

concatenated (usage: concatenateMIDIfiles <input.mid or path> [<input2.mid or

path2> <output.mid> <seconds>)

• displayScore displays the score of a MIDI file(usage: displayScore <midifile.mid>

<startseconds> <endseconds>)

• generateAppendixImages creates the thesis’ appendix images “Instrument names,

groups and colours” and “Note names and frequencies”
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• preparemidi adds a pseudo NoteON/NoteOFF event at the beginning of each track

to prevent timidity from deleting leading silence.

7.5 Simple test example

What step are actually necessary before we are able to run the main program ? Example

“.cfg”-files can be found on the CD.

First we have to generate the audio training files

buildDatabase pitchTrainingSet.cfg pitchTrainingSet.mid

timiditymidi2wav pitchTrainingSet.mid pitchTrainingSet.wav

buildDatabase instrumentTrainingSet.cfg instrumentTrainingSet.mid

timiditymidi2wav instrumentTrainingSet.mid instrumentTrainingSet.wav

and their distorted versions

adb_train pitchTrainingSet.wav distlist_timidity_pitch.txt

adb_train instrumentTrainingSet.wav distlist_timidity_instrument.txt

to start the training.

a2mTrainFiT pitch.conf pitchTrainingSet/trainingslist.txt pitch.FiT

a2mTrainFiT instrument.conf instrumentTrainingSet/trainingslist.txt instrument.FiT

No audio2midi without a sound database.

buildDatabase database.cfg database.mid

timiditymidi2wav database.mid database.wav

Now we are ready to start the main program.

audio2midi instrument.FiT pitch.FiT database.wav input.wav a2m_input.mid
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Chapter 8

Evaluation

The second last chapter is reserved to the evaluation of our system. By now only

polyphonic piano transcription leads to competitive results. Notwithstanding we present

some instrument recognition experiments too.

8.1 Polyphonic Piano Transcription

Now it is time for our system to prove it’s ability to survive in competition with another

implementation. For the evaluation of our polyphonic piano transcription we choose

the system of Graham E. Poliner and Daniel P.W. Ellis as a yardstick. They present

a “Discriminative Model for Polyphonic Piano Transcription” [27] by the use of Sup-

port Vector Machines which is a non-linear classification technique. Remember that we

perform some sort of Linear Discriminant Analysis instead.

8.1.1 Evaluation Metrics

Poliner and Ellis used a number of metrics to evaluate the success of their approach.

The first one, proposed by Simon Dixon [7], is the Overall Accuracy

Acc ≡ TP

FP + FN + TP
(8.1)

where TP denotes the number of correctly transcribed note-frames over all notes

(“true positives”), FP is the number of unvoiced note-frames transcribed as voiced (“false

positives”) and FN designates the number of voiced note-frames transcribed as unvoiced

(“false negatives”) [27]. The term note-frame indicates that both, the original ground

truth and the transcription result are divided into short frames of 10ms length which are
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again compared frame by frame. The Overall Accuracy is bounded by 0 and 1, where 1

signifies that the transcription is perfect.

To gain an insight into the trade-off between single missed and inserted notes Poliner

and Ellis used a transcription error score, which is based on the “speaker diarization

error score” defined for the evaluations of “who spoke then” in recorded meetings[25, 27].

Their total error score

Etot ≡
∑T

t=1 max(Nref (t), Nsys(t))−Ncorr(t)∑T
t=1 Nref (t)

(8.2)

can be subdivided into the three expressive components. The substitution error score

Esubs ≡
∑T

t=1 min(Nref (t), Nsys(t))−Ncorr(t)∑T
t=1 Nref (t)

(8.3)

indicates the fraction of mislabeled notes. Miss error score

Emiss ≡
∑T

t=1 max(0, Nref (t)−Nsys(t))∑T
t=1 Nref (t)

(8.4)

is a measure for unrecognized notes and finally the false alarm error score

Efa =

∑T
t=1 max(0, Nsys(t)−Nref (t))∑T

t=1 Nref (t)
(8.5)

which refers to the number of false positives (i.e. if a note is read into silence). Ncorr(t)

denotes the number of correctly labeled notes per frame, which again is the intersection

of the ground truth notes Nref (t) and the recognized notes Nsys(t).

8.1.2 Test Results

Poliner and Ellis used synthesized as well as live recorded files to train and test their

Support Vector Machines. They furthermore offer the possibility to download their live

recorded training and test audio and MIDI files [20]. Since our recognition results on

the (decent quality) recorded audio files are not worth mentioning we confine ourselves

to present the results of the synthesized test set. An overview of the compositions used

for our test can be found in table D.1.

Like Poliner and Ellis we select the first minute of each song for evaluation. With

the total of 29 test compositions from [20] we have 29 minutes of testing audio at our

disposal which amounts to 15066 note instances. Figure 8.1 shows the note distribution
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Figure 8.1: The note distribution of our polyphonic piano test set (table D.1). 98.8% of
the note instances are comprised in the interval from note number 32 to 95.

Algorithm Acc Etot Esubs Emiss Efa

Audio2MIDI(*) 15.1% 51.9% 9.1% 32.5% 10.3%
Poliner and Ellis 67.7% 34.2% 5.3% 12.1% 16.8%
Ryynänen and Klappuri 46.6% 52.3% 15.0% 26.2% 11.1%
Marolt 36.9% 65.7% 19.3% 30.9% 15.4%

Table 8.1: The Overall Accuracy and the different error scores of our system in com-
parison with three different implementations, taken from [27]. The tiny little
asterisk (*) and the additional horizontal line indicates that we used only a
synthesized test set. For this very reason the results are not really comparable,
but they signal that our approach falls behind.

of our test set (table D.1). 98.8% of the note instances are comprised in the interval

from note number 32 to 95 which justifies our restriction.

Table 8.1 shows a comparison of the Overall Accuracy and the different error scores

of our system and three different implementations. Since we used only a synthesized

test set, the results are not really comparable, but they signal that our approach falls

behind.

A remarkable observation is that the partial results of the different test files deviate

very much from each other. Table 8.2 shows the Overall Accuracy and the different

error scores of some selected test compositions, namely the ones with the best and worst

accuracy (top) and the lowest and highest total error score (bottom).
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Composition Acc Etot Esubs Emiss Efa

Ludwig van Beethoven, Pathetique(3) 41.4% 31.2% 7.2% 19.0% 5.0%
Frédéric Chopin, Opus 10(1) 0.5% 71.0% 11.6% 59.3% 0.1%
Joseph Haydn, Sonata in G major(2) 40.3% 28.8% 7.4% 9.3% 12.1%
Edvard Grieg, Opus 71(3) 14.0% 83.7% 7.2% 22.5% 54.0%

Table 8.2: The Overall Accuracy and the different error scores of some selected test
compositions, namely the ones with the best and worst accuracy (top) and
the lowest and highest total error score (bottom).

8.2 Instrument recognition

The remainder of this chapter is about instrument recognition. The first question to

answer is the one from section 5.6. Does the instrument (and pitch) recognition depend

on the query instrument?

8.2.1 Different Instruments

Figure 8.2 shows that the answer is “yes”. Yuki Kuramoto’s Lake Louise is played with

11 different instruments, only the first one of each instrument group (instrument #80

is replaced by instrument #81). Both, instrument and pitch recognition depend highly

on the query instrument. While instrument accuracy outperforms pitch accuracy if the

organ (instrument #16) is present, most of the other instruments show the opposite

result.

8.2.2 Confusions

For the final tests of our system we exploit confusion matrices to visualize the results of

our monophonic and polyphonic instrument test results. Figure 8.3 shows the confusion

matrix of our first instrument test with a medley of 3 simple monophonic nursery rhymes

(see table E.1).

The instrument recognition rates of that simple test are shown in table 8.3.

The final confusion matrix shows the results of our last test with a medley of 5 movie

themes (see table E.1, row 6 to 11) and two different soundsets [31] (SGM180.sf2 on the

left and Unison.sf2 an the right).

The instrument recognition rates of our last test with a medley of 5 movie themes (see

table E.1, row 6 to 11) are shown in table 8.3.
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Figure 8.2: Yuki Kuramoto’s Lake Louise is played with 11 different instruments, only
the first one of each instrument group (instrument #80 is replaced by instru-
ment #81). Both, instrument and pitch recognition depend highly on the
query instrument.

Figure 8.3: A confusion matrix of our first instrument test with a medley of 3 simple
monophonic nursery rhymes (see table E.1)
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pitch pitch instrument
per slice accuracy 88.6% 68.7%
search space reduction 94.6% 98.3%
correct group n.a. 74.2%

Table 8.3: The accuracies of a simple monophonic audio2midi test with a querying time
of 896s.

Figure 8.4: A confusion matrix of our last test with a medley of 5 movie themes (see
table E.1, row 6 to 11)

pitch pitch instrument
per slice accuracy 11.6% 8.7%
search space reduction 90.4% 98.7%
correct group n.a. 8.9%

Table 8.4: The accuracies of a last test with a medley of 5 movie themes with a querying
time of 80min.

57



Chapter 9

Conclusion

We proposed a new method for the transcription of music with the help of a sound

database. For the sake of simplicity we left out the transcription of drums and percussion

and restrict ourselves to the recognition of synthesized audio without any distortions.

That represents the ideal test bed for our database search.

We cherished the hope that our system will perform quite well within these (simple)

conditions but the instrument recognition results are not really encouraging at all.

Why are the results so poor ?

First of all we perform a Linear Discriminant Analysis. A nonlinear classification tech-

nique might be more suitable for music transcription and especially instrument recogni-

tion [27].

The underlying idea of every database is that you can only found something that’s

previously stored in it. For this reason it is a quite challenging task to transcribe poly-

phonic music with a monophonic database. If it were possible to have a giant database

with all imaginable instruments, chords or processes of pitch our database approach

would have more chances of success.
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Appendix A

Content of the CD

The CD contains 5 top-level directories:

• resources some Perl scripts to install required additional software like adbm[14],

mmca[2], libjdkmidi[18] or timidity[32], including some high quality soundfont files

• source the full source code of the audio2midi project (including libbeattempo)

• thesis the latex source files of this thesis with all images

• experiments one subfolder for each experiment with all required .cfg and midi files

• examples a small collection of sample audio and midi files
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Appendix B

Instrument names, groups and colours

Overview of the General MIDI melody instruments (from [17]) together their dedicated

colours.
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Appendix C

Note names and frequencies

Overview of the General MIDI note numbers together with their (american) names and

frequencies (from [4]).
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Appendix D

Polyphonic piano compositions

Composer Title Year
Isaac Albéniz España(Prélude) 1890
Johann Sebastian Bach BWV 847 1722
Johann Sebastian Bach BWV 850 1722
Mili Alexejewitsch Balakirew Islamej 1869
Ludwig van Beethoven Für Elise 1810
Ludwig van Beethoven Pathetique(1) 1799
Ludwig van Beethoven Pathetique(3) 1799
Alexander Borodin Petite Suite(In the monastery) 1885
Johannes Brahms Fantasia(2) 1892
Johannes Brahms Fantasia(6) 1892
Friedrich Burgmueller The pearls n/a
Frédéric Chopin Opus 7(1) 1831
Frédéric Chopin Opus 10(1) 1832
Claude Debussy Passepied 1905
Enrique Granados Oriental 1900
Edvard Grieg Opus 71(3) 1901
Joseph Haydn Sonata in G major(1) 1784
Joseph Haydn Sonata in G major(2) 1784
Franz Liszt Grandes Etudes de Paganini (1) 1851
Felix Mendelssohn Opus 30(1) 1834
Wolfgang Amadeus Mozart KV 330(1) 1783
Wolfgang Amadeus Mozart KV 333(1) 1783
Modest Mussorgsky Pictures at an Exhibition(1) 1874
Franz Schubert D 760(4) 1822
Franz Schubert D 784(1) 1823
Robert Schumann Scenes from Childhood(4) 1838
Robert Schumann Scenes from Childhood(6) 1838
Peter Tchaikovsky The Seasons(January) 1876
Peter Tchaikovsky The Seasons(April) 1876

Table D.1: Live training and testing sets, downloaded from [20].
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Appendix E

Compositions used for instrument

recognition

Composer Title
John Williams Theme from Schindler’s List
Yuki Kuramoto Lake Louise (Clavinova Demo)
Monophonic Alle meine Entchen
Monophonic Der Kuckuck und der Esel
Monophonic Alle Vögel sind schon da
Alan Silvestri Main “Feather” theme from Forrest Gump
Coolio Gangsta’s Paradise (theme from Dangerous Minds)
Tim Rice & Andrew Lloyd Webber Theme from Jesus Christ Superstar
Danny Elfman Theme from The Simpsons
The Beatles Yellow Submarine
Alex North Unchained Melody (theme from Ghost)
James Horner Main theme from Braveheart
Monty Norman Original James Bond theme
Enya May it be (theme from Lord of the Rings)
Elmer Bernstein Theme from Ghostbusters
Boris Claudio Schifrin Mission Impossible theme

Table E.1: A selection of movie & musical themes, downloaded from [26] and some “own
compositions”.
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