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Abstract

Deep Convolutional Neural Networks have received a lot of attention over the past few
years as a promising technique for object classification in images. In this thesis, we
implemented the frequency domain convolution for the popular Caffe framework. Deep
Convolutional Neural Networks suffer from long training times even on contemporary
hardware, which we want to address in this thesis. Particularly, the operation performed
in a convolutional layer is computationally very expensive. We replaced the traditional
convolution operation by a frequency domain convolution and achieved speed-ups of
2.2× and 1.8× in the forward pass and training of a well-known award-winning Deep
Convolutional Neural Network, respectively. On self-designed convolutional layers, we
achieved even higher speed-ups. Thus, we reduced long training and evaluation times of
Deep Convolutional Neural Networks by a considerable factor. Moreover, we obtained a
constant computation time for bigger kernels in a convolution layer, therefore, facilitating
new structures for Deep Convolutional Neural Networks.
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Kurzbeschreibung

Tiefe Neuronale Faltungsnetze sind seit einigen Jahren im Fokus der Forschung, da sie
sich besonders gut für die Klassifizierung von Objektklassen auf Bildern eignen. In
dieser Arbeit haben wir die Möglichkeit erforscht die Faltung im Frequenzraum auf Tiefe
Neuronale Faltungsnetze zu übertragen. Die Faltung im Frequenzbereich behebt das
Problem der langen Berechnungszeiten der herkömmlichen Faltung. Wir stellen eine
neue Faltungsschicht für das bekannte Caffe Framework vor, welche die Eigenschaften
der Faltung im Frequenzbereich ausnutzt. Mithilfe dieser Faltungsschicht haben wir es
geschafft ein bekanntes und preisgekröntes Tiefes Neuronales Netz um den Faktor 2,2 zu
beschleunigen. Außerdem waren wir in der Lage den Zeitaufwand der Trainingsprozedur
um das 1,8-fache zu reduzieren. Wir ermöglichen mit der Faltung im Frequenzbereich
außerdem eine konstante Berechnungszeit für größere Filter. Dadurch haben wir die
Voraussetzung geschafft, um das zeitintensive Entwickeln neuer Netzstrukturen mit
großen Filtergrößen um einen merklichen Faktor verbessern.
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1. Introduction

Artificial Neural Networks are a very powerful methodology used in machine learning to
predict answers on given input data. Their structure is inspired by a biological system –
the human brain, which consists of millions of neurons. A human is able to classify known
objects in a matter of milliseconds while computers struggled at this – superficially simple
– task for a long time. Over the past few years, Deep Convolutional Neural Networks have
emerged as one of the most promising techniques for dealing with large scale learning
tasks, such as classifying objects in images. While these networks were considered way
to complex and hard to understand, Krizhevsky et al. showed in 2012 [16] that training
a Deep Convolutional Neural Network with millions of parameters is achievable by using
high-end consumer grade Graphic Processing Units (GPU). Other techniques used for
the task of classifying 1000 classes of objects performed rather weak until then. The
Deep Convolutional Neural Network approach won the famous ILSVRC contest with
a top-5 error rate of only 15.32 % and a difference of over 10 % to the second-ranked
competitor.
Since then Deep Convolutional Neural Networks have regained a lot of interest in the
research community. Even though modern hardware systems become faster and faster,
training and evaluating Deep Convolutional Neural Networks take a huge amount of
processing power since millions of parameters have to be adjusted hundred thousands of
times. Especially, the mathematical operation of a convolution is very time-consuming,
leading to training times of a couple of days for the Deep Convolutional Neural Network
proposed by Krizhevsky et al. in 2012. In this thesis, we set the focus on replacing the
computationally demanding convolution operation by an alternative method performing
the calculations in the frequency domain rather than the time domain yielding identical
results. A special focus is placed on implementing this method in a way to improve
computation times of Deep Convolutional Neural Networks. For this purpose, we use the
popular Caffe framework [12], which is widely used for designing Deep Convolutional
Neural Networks. We supply an extended version of the Caffe framework alongside with
this thesis containing the implementation of the alternative convolution method.

1.1. Related Work

In this thesis, we will focus on understanding and extending the widely-used Caffe
framework [12]. It is often used for designing and evaluating new Convolutional Neural
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2 Introduction

Network structures as well as for reconstructing popular Neural Networks. We will
examine basic implementation fundamentals used by the developers and then use them to
properly implement our expansion to the framework. Thereto, we explore implementation
details of the Caffe framework convolution as reviewed in [3] by Chellapilla et al. We use
the CaffeNet, which is based on the network proposed by Krizhevsky et al. [16] in 2012,
to test and develop a different approach for computing convolutions. Combined with
the Caffe framework, we can implement the technique of frequency domain convolution
in Deep Convolutional Neural Networks as Mathieu et al. [19] and Vasilache et al. [25]
already explored in 2014.

1.2. Outline

We start this thesis with establishing a basis for understanding a convolution layer
within a Convolutional Neural Network in chapter 2. We explore the basics of Deep
Convolutional Neural Networks, the convolution operation, a typical network structure
and discuss one of the most used techniques in digital signal processing – the Fast Fourier
Transform. After that, we present a method to evaluate the convolution in the frequency
domain, which often performs faster than the convolution in the time domain. We then
estimate possible speed-ups of convolution in the frequency domain in contrast to the
convolution in the time domain used in the Caffe framework.
In chapter 3 we describe the implementation of the convolution within the Caffe framework.
We first present the details of Caffe’s implementation on which we establish the convolution
in the frequency domain methodology. Thereto, we describe Caffe’s data structure
and how we preserve compatibility with Caffe. Afterward, we discuss additional data
structures, which we need to prepare in order to perform the convolution in the frequency
domain. On this basis, we introduce two methods for performing pointwise complex
multiplications necessary for the convolution in the frequency domain. At the end of this
chapter, we discuss further optimizations to improve performance of our implementation
and examine adaptations we used to implement the convolution in the frequency domain
on a Graphical Processing Unit.
We evaluate our approach in chapter 4. We compare the Caffe convolution with the
convolution in the frequency domain. We conduct several experiments to measure the
performance of the convolution in the frequency domain. We achieve speed-ups of 2×
on a well-known Deep Convolutional Neural Network by using the convolution in the
frequency domain. After that, we train the network with both methodologies and notice
similar speed-ups when using the convolution in the frequency domain.
Finally, we conclude our work in chapter 5 and discuss on how to enhance this approach
in the future.



2. The Convolution Operation

In this chapter, we introduce some fundamentals needed to understand the convolution
operation as performed in a Convolutional Neural Network (CNN). We begin with
defining the convolution, followed by a quick overview of the architecture of a CNN and
the convolution operation in Caffe. We then give an introduction into Fourier transforms
needed to express a convolution in the frequency domain. Afterward, we estimate
theoretical speed-ups when using the frequency domain convolution in a convolution
layer. Finally, we examine if it is possible to train a CNN by using the frequency domain
convolution.

2.1. Deep Convolutional Neural Networks

A Convolutional Neural Network is a certain type of feed-forward artificial neural network.
Neural Networks typically consist of an input layer, hidden fully connected layers and
an output layer, which we visualize in figure 2.1. We see neurons in each layer, whereas
hidden and output neurons calculate a weighted sum of weights and their inputs, which
are symbolized by the black lines. We see that each of these neurons is connected to all
neurons in the preceding layer and for that reason, the layers are called fully connected
layers. Instead of only having fully connected layers, CNNs also have convolution layers.
An output of such a layer is not dependent on all outputs of the preceding layer. Instead,
a neuron in a convolution layer only processes portions of the inputs of its layer. We
call this local portion of a neuron the receptive field of a neuron. Same weights are used
multiple times at different locations of the input, which is referred to as weight sharing in
a CNN. The weighted sum out of local connections can be expressed by a mathematical
operation called convolution. A convolution layer convolves inputs (mostly images) with
a set of weights. Deep Convolutional Neural Networks (DCNN) contain more hidden
layers than standard CNNs. In the following, we explain the convolution operation to
understand the mechanics of an implemented convolution layer as we later describe in
chapter 3.
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Figure 2.1.: A simple fully connected neural network with 4 inputs, 2 hidden layers with
3 neurons each and 2 outputs.

2.2. Convolution

Convolutional Neural Networks contain convolution layers that perform the convolution
operation. The convolution, as described in [23], combines two signals into a third one:
An input signal is combined with an impulse response yielding an output signal. The
impulse response is also called a filter. In our case we deal with discrete signals instead
of continuous signals. A discrete signal can only take a certain number of values, while
there are an infinite number of other values between any two values in a continuous
signal. Discrete signals in our examples also only consist of discrete values. For discrete
signals the filter is applied at each point of the input signal.
Assume we have an input signal i =

[
3 1 2 7 0 5 8 4

]
and a filter f =

[
1 0 −1

]
.

Before we start applying the filter to the input signal, we have to flip the filter
(f ′ =

[
−1 0 1

]
) according to the definition of the convolution operation.

The first position of i at which we can apply the filter is 1 (we use 0-based indexing,
so the value at position 1 is the second value). The center of the filter is applied at
each position of the input signal and therefore cannot be applied at position 0 without
zero-padding1 the input signal. Filters commonly have an odd size of 2 · n+ 1, n ∈ N so
the filter’s center is distinct. If we apply the filter at position 1, the filter spans from
position 0 through 2 in the input signal. The output signal o is given by:

1Zero-padding adds zeros at the start and end of a signal to increase its length.
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o0 = 3 · −1 + 1 · 0 + 2 · 1 = −1

o1 = 1 · −1 + 2 · 0 + 7 · 1 = 6

o2 = 2 · −1 + 7 · 0 + 0 · 1 = −2

o3 = 7 · −1 + 0 · 0 + 5 · 1 = −2

o4 = 0 · −1 + 5 · 0 + 8 · 1 = 8

o5 = 5 · −1 + 8 · 0 + 4 · 1 = −1

The valid2 convolution (expressed by ∗) of the input signal i with the filter f yields:

o = i ∗ f =
[
−1 6 −2 −2 8 −1

]
The valid convolution for discrete one-dimensional signals can be defined as follows:

(i ∗ f)x′ =
N−1∑
n=0

ix+(n−N−1
2

) · fN−(n+1) (2.1)

N is the filter size. Our example filter f has a size of N = 3. x′ is the destination index
and defined as x′ = x− N−1

2
. If we do not zero-pad an input signal, the convolution can

not be applied at all positions of the input signal since the filter is always applied at
its center. Following MATLAB terminology we call this a valid convolution. The first
valid position is xfirst = N−1

2
and the last valid position is xlast = dim(i) − (N−1

2
+ 1).

dim(i) denotes the number of elements within the vector i. In our example from above we
applied the filter at six positions ranging from xfirst = 3−1

2
= 1 to xlast = 8− [3−1

2
+1] = 6.

The output size is also determined by the sizes of the input signal and the filter:
dim(o) = xlast − xfirst + 1 = dim(i)−N + 1 = dim(i)− dim(f) + 1.

Convolutional Neural Networks take images as input. To convolve images, we have to
define the two-dimensional convolution. A filter of a 2D convolution is often also referred
to as a kernel. This kernel is a matrix with a size of Kheight ×Kwidth. An example for a
2D kernel is given below:

K =

−1 0 1
−2 0 2
−1 0 1


This specific K is also known as the x-component of the Sobel Operator. The sizes of
K in our example are Kh = Kheight = 3 and Kw = Kwidth = 3. The two-dimensional
convolution is similar to the one-dimensional convolution. We apply the kernel at every

2A valid convolution returns only the parts of a convolution that can be evaluated without zero-padded
borders.



6 The Convolution Operation

possible position within the given input signal I.

I =


3 2 1 9
1 0 2 1
0 1 7 5
3 2 1 3


The only difference is, that we now have two dimensions. The possible positions range
from xfirst = 1 to xlast = 2 for the x-Dimension and from yfirst = 1 to ylast = 2 for the
y-Dimension. The output signal has a size of 2× 2:

O0,0 = 3 · 1 + 2 · 0 + 1 · −1 + 1 · 2 + 0 · 0 + 2 · −2 + 0 · 1 + 1 · 0 + 7 · −1 = −7

O1,0 = 2 · 1 + 1 · 0 + 9 · −1 + 0 · 2 + 2 · 0 + 1 · −2 + 1 · 1 + 7 · 0 + 5 · −1 = −13

O1,0 = 1 · 1 + 0 · 0 + 2 · −1 + 0 · 2 + 1 · 0 + 7 · −2 + 3 · 1 + 2 · 0 + 1 · −1 = −13

O1,1 = 0 · 1 + 2 · 0 + 1 · −1 + 1 · 2 + 7 · 0 + 5 · −2 + 2 · 1 + 1 · 0 + 3 · −1 = −10

⇒ O =

[
−7 −13
−13 −10

]

We can define the 2D convolution by expanding (2.1) to the second dimension:

(I ∗K)y′,x′ =

Kh−1∑
h=0

Kw−1∑
w=0

I
y+(h−Kh−1

2
),x+(w−Kw−1

2
)
·KKh−(h+1),Kw−(w+1) (2.2)

We can now apply kernels to regular images like in Figure 2.2. Convolutional Neural
Networks perform many of those convolutions in every of their convolution layers.

Original Sobel x-component

Figure 2.2.: On the left is the input image. On the right is the convolution result of the
input with the x-component of the Sobel operator.
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2.3. Architecture in Caffe

Throughout the thesis we use the reference network of the Caffe framework [12] as our
guideline network. The reference Caffe network is based on the winner of the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) of the year 2012 [22]. The winner was
the famous DCNN of Krizhevsky et al. [16] which outperformed every other competitor in
the object detection challenge. This network is often also simply referred to as AlexNet.

We see the network design of the AlexNet in figure 2.3. The network consists of 5
convolutional layers (there are 8 learned layers in total – 5 convolutional layers and 3
fully connected layers). The first convolutional layer takes images of size 224× 224× 3 as
input. 96 different kernels of size 11× 11× 3 together with a stride of 4 yield an output
of 96× 55× 55. This output is processed by the second layer with 256 kernels of size
5× 5× 48. We see that the depth dimensions of the input data and the kernels do not
agree. This is due to a design choice made by Krizhevsky et al., because a big network
did not fit on a single GPU for training purposes. The trick was to split up the network
to fit on two GPUs. He simply convolved the first part of the input data (48× 55× 55)
with the first half of the kernels (128 kernels of size 5× 5× 48) on the first GPU. The
other half is handled by the second GPU. Note that now the depth dimension agrees.
Each convolutional layer is followed by a ReLU3 non-linearity. The second convolutional
layer is followed by a ReLU and a max-pooling4 layer. The five convolutional layers are
followed by three fully connected layers.

Figure 2.3.: The architecture of the winner of the ILSVRC 2012. The reference Caffe
network is based on the AlexNet. (Image taken from [16])

3A ReLU is the abbreviation for Rectified Linear Unit. While the standard way to model a neuron’s
output as a function is the Sigmoid function (f(x) = (1 + e−x)−1) the ReLU models a neuron’s
output with the function f(x) = max(0, x). CNNs with ReLU non-linearities train several times
faster [16] in contrast to other non-linearities such as the Sigmoid function.

4A max-pooling layer reduces the spatial dimension of its input data. E.g., a max-pooling layer of 2× 2
takes the maximum of each 2× 2 subsection of an input and therefore reduces the dimension by a
factor of 4.
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The reference Caffe network is a slightly changed version of the AlexNet. E.g., an
additional max-pooling layer is introduced between the first convolutional layer and
the second one. The network expects a slightly bigger input size (227 × 227 × 3 vs.
224× 224× 3). In table 2.1 all important parameters of each layer are shown. We give a
definition of the symbols used:

• N : The number of images which are put into the network. We also call it the batch
size. We give no value for N in the table, because we can choose the batch size
freely.

• K: The number of channels a single input (image) has.

• H: The height of the input (image).

• W : The width of the input (image).

• Kh: The height of the filter. (Kernel height.)

• Kw: The width of the filter. (Kernel width.)

• g: The group parameter. Specifies the number of virtual GPUs the kernels and
input data have to be split up.

• s: The stride parameter. If s = 4, only every 4-th pixel (across both dimensions) is
convolved with the kernels.

• ph: The number of pixels to zero-pad on both sides of the height dimension.

• pw: The number of pixels to zero-pad on both sides of the width dimension.

• Noutput: The number of kernels (output features).

• Houtput: The output height.

• Woutput: The output width.

Note that we can easily determine the output sizes of convolution layer by combining
some other parameters:

Houtput = (H + 2ph −Kh)/s+ 1

Woutput = (W + 2pw −Kw)/s+ 1
(2.3)

The data layout in Caffe is denoted by 4 dimensional vectors of size N×K×H×W for the
input data. Filters are also stored in this data format with a size of Noutput×K×Kh×Kw.
The output is of size N×Noutput×Houtput×Woutput. We describe the storage architecture
in more detail in section 3.1.3.
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Table 2.1.: Convolution layer parameters used in the reference Caffe Network

N K H W Kh Kw g s ph pw Noutput Houtput Woutput

conv1 3 227 227 11 11 1 4 0 0 96 55 55
conv2 96 27 27 5 5 2 1 2 2 256 27 27
conv3 256 13 13 3 3 1 1 1 1 384 13 13
conv4 384 13 13 3 3 2 1 1 1 384 13 13
conv5 384 13 13 3 3 2 1 1 1 256 13 13

2.4. Convolution in Caffe

In a CNN, many convolutions are performed in each layer. The first layer of the reference
Caffe network takes images with the size of 227× 227× 3 as input and has 96 kernels of
the size 11× 11× 3, which means that there are 96 kernels of size 11× 11 for each of
the 3 channels of the input image (see also table 2.1). The convolution we defined in
section 2.2 is computationally very expensive. For each output of a single convolution,
there are Kh ·Kw multiplications. We perform such a convolution for every channel and
sum these up over the channels. Thus, we eliminate the channel dimension in the output.
The output size of a single convolution is Houtput × Woutput. If we use the standard
convolution technique there are a total number of #· = 11 ·11 ·55 ·55 ·96 ·3 = 105.415.200
multiplications and the same amount of additions (#+) per image just in the first
convolution layer of the reference Caffe network.
In Caffe another method like described in [3] is used. As we can see in #· and #+ the
number of arithmetic operations for a convolution scales quadratically with respect to
the kernel size. Applying a kernel of the size 7 × 7 needs almost twice the number of
arithmetic operations as needed for a kernel of size 5× 5. Each value of an input image
is used more than once during a convolution. This leads to cache unfriendly memory
accesses. The method used in Caffe and [3] is called unfolding and duplicating of inputs.
Values used more often are duplicated and unfolded into a new matrix. The kernels are
also unfolded into a separate matrix. The method calculates a matrix product of the
unfolded inputs and weights which yields an output matrix.
For every output feature, we compute K = 3 (one per input channel) convolutions. Since
we only forward one output per feature to the next layer, we sum up the convolution
results of each channel to obtain a single result. We can use this fact and perform a matrix
multiplication to sum up the channels’ convolution results. In figure 2.4 a convolution of
an input image with a size of 3× 3 with K = 3 channels is computed. For every output
feature (Noutput = 2) and channel of the input image there is a corresponding convolution
kernel. We compute K convolutions per output feature and sum them up as seen on the
top of the figure.

On the bottom of the figure, the convolution by matrix multiplication method is illustrated.
For each channel, we extract subsections with the size of the convolution kernel and write
each subsection into a new matrix’ row, where we store channels consecutively. Note that
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Figure 2.4.: Example of convolution by matrix multiplication. The top part of the figure
shows the naive way of performing a convolution in a CNN while the bottom
shows the faster matrix convolution. (Image taken from [3])
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this is the unfolding we spoke of earlier. Each row stands for another output position
(the output size of a feature is 2× 2 which results in 4 rows). In the kernel matrix, we
do not need to duplicate values and unfold a single feature’s values into one column.
Note that we implicitly sum up over all channels, because of the definition of a matrix
multiplication. The output matrix has to be reshaped back to yield the same form as
the output features seen on top of the figure. We see in the resulting matrix that one
column represents one output feature.
Matrix multiplications can be computed very efficiently on modern CPUs and GPUs
because of heavily tuned BLAS5 libraries [17] like Intel’s Math Kernel Library (MKL) [5]
or OpenBLAS [26]. Matrix multiplications with BLAS libraries do not suffer from cache
unfriendly memory accesses in contrast to the naive convolution method.
Figure 2.5 shows the unfolding of the inputs that is needed to do the matrix multiplication
convolution as performed in a Caffe convolution layer. As we described in the previous
example, each channel of the input features on which the kernel is applied is unfolded
into a separate part of the resulting input features matrix. This matrix has a size of
Houtput ·Woutput ×Kh ·Kw ·K, which is 3025× 363 for the first convolution layer of the
reference Caffe network. The kernel matrix has a size of Kh ·Kw ·K ×Noutput, which
is 363 × 96. The output features matrix’s size is Houtput ·Woutput × Noutput, which is
3025× 96. We exactly produce the desired output, which we forward to the next layer.

The naive multiplication algorithm for square matrices needs O(Ṅ3) arithmetic operations.
However, this only applies to square matrices with a side length of Ṅ . We denote a
general matrix multiplication by the matrices A, B and C:

A ·B = C

The naive multiplication of rectangular matrices needs 2ṀṄK̇ operations, whereas Ṁ
are the number of rows in matrix A and C, Ṅ are the number of columns in matrix B
and C and K̇ specifies the number of columns in matrix A and the number of rows in
matrix B.

The complexity for the naive matrix multiplication algorithm yields 2 · 3025 · 96 ·
363 = 2 · 105,415,200 = 210,830,400 arithmetic operations for the first convolution layer
(105,415,200 multiplications and 105,415,200 additions). Note that this number is the
same as for the simple convolution algorithm. In 1969 Volker Strassen [24] proposed an
algorithm for faster multiplication of square matrices with a complexity of O(Ṅ log2 7) ≈
O(Ṅ2.807). This algorithm is used in the well-known BLAS libraries mentioned before. In
[10] the number of multiplications for rectangular matrices using the algorithm of Strassen

is derived. The number of multiplications needed is min(Ṁ, Ṅ , K̇)log2
7
8 · ṀṄK̇. There

is no general formula for the number of additions, but it is of the same magnitude as the
number of multiplications. We get a total of 2 ·min(3025, 96, 363)log2

7
8 · 3025 · 96 · 363 =

2 · 96log2
7
8 · 105,415,200 ≈ 87,510,152 arithmetic operations, which are 123,320,248 less

than estimated for the naive algorithm. Therefore, Caffe can achieve a speed-up of 2.4×
5BLAS stands for Basic Linear Algebra Subprograms.



12 The Convolution Operation

Figure 2.5.: Unfolding of inputs in a convolution layer into the matrix product convolution
(Image taken from [3] and altered.)
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in layer 1 by using the alternative method of convolution by matrix multiplication. In
addition, memory friendly accesses speed up the convolution even more. In Caffe or
MATLAB the method of unfolding before the matrix multiplication is implemented in a
method called im2col.

2.5. Fourier Transforms

In this section, we give a short introduction to the Discrete Fourier Transform and the
Fast Fourier Transform, which are powerful tools for analyzing and processing digital
signals in the frequency domain rather than the time domain. After applying those
transforms, we can analyze a signal with respect to the frequencies it contains rather
than with respect to the time. This enables us to do powerful processing operations,
which are otherwise not possible.

2.5.1. Discrete Fourier Transform

In the following section we use definitions and properties proposed by Richard Lions
in [18, Chapter 3]. The foundation for the Discrete Fourier Transform (DFT) is the
(continuous) Fourier transform. We define the continuous Fourier transform as follows:

x̂(f) =

∫ ∞
−∞

x(t)e−i2πtfdn (2.4)

In (2.4) x(t) denotes a continuous time domain input signal, whose frequency contents
will be decomposed into a continuous frequency domain signal x̂(f) by taking the Fourier
transform. Every signal is composed out of frequencies, which the Fourier transform
recovers. f is a frequency in the decomposed signal while e ≈ 2.71818 is Euler’s Number
and i =

√
−1 is the imaginary unit. The Fourier transform delivers the frequency content

or harmonic content of any signal.
The DFT does the same for non-continuous signals and is the mathematical method for
determining the frequencies of a discrete signal sequence. We describe an input signal
sequence with a vector x and define the DFT like this:

x̂m =
N−1∑
n=0

xne
−i2πnm/N (2.5)

N is the number of samples within in the vector x and m is the output index. m ranges
from 0 to N − 1 for complex-to-complex transforms (complex valued inputs are assumed).
xn describes the n-th component of the vector x. Each complex number in x̂ describes
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the amplitude and phase angle of a frequency. The frequency of x̂m is mfs
N

, whereas fs is
the sampling frequency of the signal.
For real-to-complex transforms (we only use real values in our input x), we only need to
calculate (N/2) + 1 frequency values in the output vector x̂. This follows because of the
Hermitian symmetry of real-valued DFTs, which states that if we use real values as input,
the frequency values from m = 1 to m = (N/2)− 1 are redundant with the frequency
values of m > (N/2). Each value can be constructed by its Hermitian symmetric value.
The amplitude of a value and its Hermitian symmetric value are the same, while the
phase angle of m is exactly the negative phase angle of N −m. We can describe this
fact with the complex conjugate6 as follows:

x̂m = x̂N−m

Because of the conjugate symmetry of the DFT only the first (N/2) + 1 values are
independent and we only need to compute those values. We can easily prove the
conjugate symmetry by substituting N −m for m in (2.5):

x̂N−m =
N−1∑
n=0

xne
−i2πn(N−m)/N =

N−1∑
n=0

xne
−i2πnN/Ne−i2πn−m/N =

=
N−1∑
n=0

xne
−i2πnei2πnm/N =

N−1∑
n=0

xn1ei2πnm/N

(2.6)

We can achieve the last step in (2.6), because according to Euler’s formula7 e−i2πn =
cos(2πn)− i sin(2πn) = 1. Note that ∀n ∈ N : cos(2πn)− i sin(2πn) = 1. We can easily
see that (2.6) is the complex conjugate of (2.5).

We can now calculate the DFT for our discrete example signal i =
[
3 1 2 7 0 5 8 4

]
from section 2.2. Because of the symmetry of real-to-complex transforms we only need
to calculate the first (N/2) + 1 = 5 values for the DFT (m ∈ [0; 4]). For m = 0 (2.5)
evaluates to î0 =

∑N−1
n=0 in and we only need to sum up all input values:

î0 = 3 + 1 + 2 + 7 + 0 + 5 + 8 + 4 = 30 + 0i

î1 = 3 · e−i2π0·1/8 + 1 · e−i2π1·1/8 + 2 · e−i2π2·1/8 + 7 · e−i2π3·1/8

+ 0 · e−i2π4·1/8 + 5 · e−i2π5·1/8 + 8 · e−i2π6·1/8 + 4 · e−i2π7·1/8 =

= 3 + 1 · (0.7071− 0.7071i) + 2 · (6.1232 · 10−17 − 1i)+

+ 7 · (−0.7071− 0.7071i) + 0 + 5 · (−0.7071 + 0.7071i)+

+ 8 · (−1.8370 · 10−16 + 1i) + 4 · (0.7071 + 0.7071i) = −1.9497 + 6.7071i

î2 = −7 + 5i

î3 = 7.9497− 5.2929i

6The complex conjugate of a complex number c = a + ib is defined as c = a− ib.
7Euler’s formula is defined by eix = cosx + i sinx
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î4 = 4 + 0i

î5 = 7.9497 + 5.2929i

î6 = −7− 5i

î7 = −1.9497− 6.7071i

Taking the real-to-complex DFT of our real vector therefore yields:

î =
[
30 −1.9497 + 6.7071i −7 + 5i 7.9497− 5.2929i 4

]
There is also a transform called the Inverse Discrete Fourier Transform (IDFT), which
reverses the DFT as the name suggests. The definition of the IDFT is quite simple, as it
is like (2.5) but with a positive i in the exponent and normalized with 1

N
:

xn =
1

N

N−1∑
m=0

x̂me
i2πnm/N (2.7)

Note that if we want to get our input vector i back, we have to supply x̂ of length N = 8.
We can supply this vector easily by using x̂m = x̂N−m for m > (N/2) like we described
before.
We can also compute the DFT of two-dimensional signals such as images. We have to
expand the DFT equation from (2.5) by a second dimension:

X̂u,v =
H−1∑
y=0

W−1∑
x=0

Xy,xe
−i2π(yu/H+xv/W ) (2.8)

u and v are the output indices of the 2D-DFT while y and x are the image’s input
indexes. The image size is H ×W (height × width). The output of the real-to-complex
2D-DFT contains some redundancies, too. Generally, one of the dimensions in any n
dimensional DFT can be reduced like shown before. Therefore, the count of complex
numbers needed to store the two dimensional real-to-complex transform is

H · (W/2) + 1. (2.9)

Of course we can also inverse the 2D-DFT. We expand (2.7) by a second dimension and
normalize by it:

Xy,x =
1

HW

H−1∑
u=0

W−1∑
v=0

X̂u,ve
i2π(yu/H+xv/W ) (2.10)

2.5.2. Fast Fourier Transform

As seen in the example in section 2.5.1 the DFT takes many arithmetic operations to
complete. For a 8-point complex-to-complex transform we have to perform N2 = 64
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complex multiplications. The DFT is the most straightforward way to determine the
frequencies a sequence in the time domain contains, but it is very slow as it scales
quadratically with the input size.
In 1965 Cooley and Tukey [4] found a very efficient algorithm for computing the DFT
commonly known as the Fast Fourier Transform (FFT) or Radix-2 FFT. The algorithm
is known as the Radix-2 FFT since it only takes inputs with a size of N = 2k whereas k
is any positive integer. We can see in our example, where we determined the frequency
domain representation of the input signal, that there are many redundant operations
within the evaluation of x̂1 (Note the factor 0.7071 appearing all over the evaluation with
mere sign changes). The FFT uses this fact among others to save complex multiplications.
The number of complex multiplications within the FFT are approximately (because mere
sign changes are not considered a multiplication) N

2
log2N . In our example from before we

would only need 4 · log2 8 = 12 complex multiplications instead of 64. For a 214 = 16384-
point DFT we would need about 268 million complex multiplications, whereas the FFT
would only need 114,688 complex multiplications. This is an approximate speed-up of a
factor 2340×. To put that in perspective, figure 2.6 shows the number of calculations
(y-axis) needed for the FFT vs. the DFT with respect to the input size N shown on the
x-axis.

100 101 102 103 104 105 106 107 108

Input size (N)

100

101

102

103

104

105

106

107

108

109

1010

1011

1012

1013

1014

1015

N
u
m

b
e
r 

o
f 

co
m

p
le

x
 m

u
lt

ip
lic

a
ti

o
n
s

DFT

FFT

Figure 2.6.: The plot shows the number of complex multiplications needed by the DFT
and FFT with respect to the input size. The DFT is shown in blue and the
FFT in red.

It is important to note that the FFT is no approximation of the DFT. The FFT is equal
to the DFT. Now we give a short derivation of the FFT algorithm. The details can also
be found in [18, Chapter 4.3].
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The FFT is a divide and conquer algorithm. We split the sum within the DFT (2.5) into
two sums of length N/2, which sum up the even and odd terms for n respectively. We
also extract the so-called twiddle factors (Wm

N = e−i2πm/N ) out of the second sum. These
twiddle factors can be reused many times. After a few more steps we can represent the
outputs of the DFT like this:

x̂m =

(N/2)−1∑
n=0

x2nW
nm
N/2 +Wm

N

(N/2)−1∑
n=0

x2n+1W
nm
N/2

x̂m+N/2 =

(N/2)−1∑
n=0

x2nW
nm
N/2 −Wm

N

(N/2)−1∑
n=0

x2n+1W
nm
N/2

(2.11)

Note that m now ranges from 0 to (N/2)− 1. In (2.11) we can see clearly that we only
have to compute x̂m, which saves us the reevaluation of any sine or cosine multiplications
for x̂m+N/2. We can simply reuse the values already calculated in x̂m. Because we
required the input size to be a power of 2 we can repeatedly split up this sum. Hence,
we obtain the logarithmic runtime complexity of the FFT algorithm.
In our example from before we had an input size of N = 8 which is a power of two and
satisfies our premise. But how can we transform input sizes other than N = 2k? We
can do this in two different ways. We can crop the input size to the next lower N that
satisfies the premise. However, by doing this, we would lose significant samples of the
input vector, which is not an option. We can also increase the length of our input vector
to the next power of 2 by appending zeros at the end. This technique called zero-padding
ensures that every data sample is used.
There are other Radix FFT algorithms like Radix-3 or Radix-5 which split the DFT sum
up into 3 or 5 smaller DFTs respectively. Modern CPU or GPU implementations of the
FFT, therefore, support input sizes of N = 2a · 3b · 5c · 7d · 11e or sizes composed out of
even higher prime factors, whereas the Radix-2 FFT performs better than the Radix-3
FFT and so on. We denote the FFT compatible size of N by NFFT. We can apply
the Radix algorithms on the IDFT (2.7) as well. We call this the Inverse Fast Fourier
Transform (IFFT). Furthermore, the FFT can be applied to the 2D-DFT and 2D-IDFT
as well. The FFT sizes for the 2D-FFT are denoted by HFFT and WFFT respectively.

2.6. Convolution in the Frequency Domain

We already performed the convolution in the time domain (see section 2.2). But we
can also compute it within the frequency domain. The convolution theorem states
that the Fourier transform of the convolution between two functions is equal to the
multiplication of their Fourier transforms:

F(f(x) ∗ g(x)) = F(f(x)) · F(g(x)) (2.12)
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A detailed derivation of this theorem is given in appendix A. The derivation is given for
the continuous Fourier transform but also applies to the DFT as stated in [2, p. 367].
To perform the discrete convolution in the frequency domain we take the DFT of an
input signal i and a filter f . By performing a pointwise multiplication (also known as
Hadamard product ◦) between the resulting vectors we get the DFT of the convolution
between i and f :

F(i ∗ f) = F(i) ◦ F(i) = î ◦ f̂

If we take the IDFT (denoted by F−1(·)) of the result we get the exact result as the
convolution in the time domain yields:

F−1(̂i ◦ f̂) = i ∗ f

We computed F(i) = î earlier (see section 2.5.1):

î =
[
30 −1.9497 + 6.7071i −7 + 5i 7.9497− 5.2929i 4

]
A pointwise multiplication between î and f̂ is only possible if the vectors have the same
length. Therefore we have to zero-pad f to length NFFT = 8 before taking the DFT. Note
that NFFT is the FFT friendly size of max(dim(i), dim(f)) for both the input and the
filter. The DFT of f evaluates to:

f̂ =
[
0 1 + 1i 2 1− 1i 0

]
We compute the pointwise multiplication between î ◦ f̂ and the IDFT of the result:

î ◦ f̂ =
[
0 −8.6569 + 4.7574i −14 + 10i 2.6569− 13.2426i 0

]
F−1(̂i ◦ f̂) =

[
−5 −3 −1 6 −2 −2 8 −1

]
We see that after taking the IDFT, we obtain the same result we computed in section 2.2.
The first two values are a result of the circular convolution. In the example from section 2.2
we computed the convolution from position 1 through 6. The circular convolution simply
overlaps to the end or the start respectively when performed at position 0 and 7.
Because we can perform the DFT very fast by using the FFT, the convolution in the
frequency domain can accomplish considerable speed-ups in contrast to the time domain
convolution. Again, we can do the same thing for the two dimensional case. The IFFT of
the pointwise product between the Fourier Transforms of two matrices is equal to their
convolution in time space:

F−1(̂I ◦ K̂) = I ∗K

We define the FFT friendly sizes for the two-dimensional transform similar to the
one-dimensional transform:

HFFT = next compatible prime size of max(H,Kh)

WFFT = next compatible prime size of max(W,Kw)

We present details on the methodology for obtaining the next compatible prime size in
section 3.3.3.
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2.7. Fast pointwise multiplication

We can use the fact that the FFT is linear to further improve the performance. Remember
that in a convolutional layer within a neural network 2D convolution results of each
channel are summed up before the results are forwarded to the next layer. In the first
layer of our reference network, we perform 96 convolutions for each of the 3 channels.
Because the FFT is linear, we can sum up the results over the channels and only take
the IFFT of 96 results instead of 288.
In 2015 Vasilache et al. proposed a novel way [25] to reduce the problem of the pointwise
multiplication to a matrix multiplication. As we explored before matrix multiplications
within famous BLAS libraries are heavily tuned and perform many times faster because
they use the algorithm proposed by Strassen. In figure 2.7 both versions of the pointwise
multiplications are demonstrated. The simple pointwise multiplication as we described in
section 2.6 is on the left side of the figure. Assume we have a batch size of 2 images with
2 channels passed to our convolutional layer. The 2 images are separated by a vertical
line in the figure and the channels are next to each other. Assume the 2D-FFT of each
channel in each image yields a 2 × 2 frequency domain representation. Therefore we
have a complex input sequence Î of size 2× 2× 2× 2. Note that we not have used the
imaginary unit i in the figure for simplicity reasons. Also, we have a frequency domain
representation K̂ of a single kernel that has the same channel dimension as the input (1
kernel with 2 channels of size 2× 2). If we pointwise multiply the first image with the
kernel and sum up the results of the channels, we obtain the output for the first image.
We handle the second image accordingly. The results are shown on the bottom left of
the figure (Ô).

Figure 2.7.: Two ways of pointwise multiplication in the frequency domain. On the left
the naive method is shown. After the pointwise multiplication values have to
be summed up to get the result. On the right side the matrix multiplication
version is shown.
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Remember the data layout notation from section 2.3 which is denoted by N × K ×
HFFT×WFFT. For the input, N equals the number of images passed to the convolutional
layer while for the kernel N = Noutput. We transpose the inputs and kernels to a
HFFT ×WFFT ×N ×K layout (as we can see on the right side of the figure) to perform
the matrix multiplication. Afterwards, we perform HFFT·WFFT = 4 matrix multiplications
with matrices of sizes N × K and (Noutput × K)T. Note that K is the same for each
transposed sequence and we therefore can perform a matrix multiplication. The matrix
multiplications yields H ·W = 4 matrices of size N ×Noutput each. We can see the result
of size 2 × 2 × 2 × 1 on the bottom right. If we transpose the result back, we get an
output sequence of size 2× 1× 2× 2, which yields the exact same result as the simple
pointwise multiplication. As we discovered at the beginning of this section we can now
take the IFFT of the already channel-reduced output Ô to get a real-valued result of the
convolution operation as performed in a convolutional layer.

2.8. Theoretical speed-ups

In the following section we explore the theoretical speed-ups we could accomplish by
replacing the Caffe convolution (see section 2.4) through an FFT based convolution. We
exemplary compute the FLOP8 count on the reference Caffe network to get an estimate
if the FFT convolution can pay off in contrast to the Caffe convolution. We calculated
our estimate for the Caffe convolution for every layer. We denote the Caffe convolution
by caffe-conv and # as abbreviation for the FLOP count.

m :=
Noutput

g
, n := Houtput ·Woutput, k :=

KKhKw

g

#(caffe-conv) = #(im2col) + #(gemm(m,n, k)) · g

#(im2col) =
H + 2ph −Kh

s+ 1

W + 2pw −Kw

s+ 1
KKhKw

#(gemm(m,n, k)) = 2 ·min(m,n, k)log2(
7
8
) ·mnk

#(caffe-conv) is the FLOP count needed for the Caffe convolution per layer. Note
that #(im2col) is FLOP count for reorganizing the data into the input matrix. We
calculated this FLOP count based on the original implementation in the Caffe framework.
#(gemm(m,n, k)) is the FLOP count for the general matrix multiplication (gemm). m,n, k
are the sizes of the two matrices multiplied by each other like we explored before. All
other variables are like defined in section 2.3.

8FLOP means floating operation. Note that this is different from FLOPS which is used to describe the
number of floating operations per second.
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2.8.1. Speedup through FFT

We can also estimate the FLOP count needed for the FFT convolution. We have already
stated the complexity for a one dimensional FFT in section 2.5.2. We can easily expand
this to the two dimensional transform and therefore also compute a FLOP count:

#(fft(k,HFFT,WFFT)) = kHFFTWFFT log2(HFFTWFFT)

The popular FFTW [8] library can compute a real-to-complex transform with k = 2.5.
HFFT,WFFT are the height and width of the FFT respectively. We have to compute
many FFTs (for a single input image K FFTs and Noutput IFFTs). Also note that we do
not count the FLOP count of taking the FFT of the kernels, since we only have to do
this once. We can reuse the frequency representation of kernels for every pass. We have
to normalize the values after taking the IFFT by 1

HFFTWFFT
as we also described in the

2D-IDFT equation (2.10). The FLOP count for the FFT convolution can be calculated
as follows:

#(fft-conv) = #(fft-input) + #(pw-simple) + #(ifft) + #(normalize)

#(fft-input) = #(fft(k,HFFT,WFFT/2 + 1)) ·K
#(pw-simple) = Noutput ·

c

g
·HFFT · (WFFT/2 + 1) · 8

#(ifft) = #(fft(k,HFFT,WFFT/2 + 1)) ·Noutput

#(normalize) = Noutput ·Houtput ·Woutput

#(fft-input) is the FLOP count for taking the FFT of the input data. We need a
FLOP count of #(pw-simple) to compute the pointwise multiplication between the input
and kernels. We need 6 floating operations for a single complex multiplication9 and 2
floating operations to aggregate this result up over the channels, hence the multiplication
by 8.

Figure 2.8 shows an estimation for the FLOP count of fft-conv and caffe-conv in
the reference Caffe network. We can see that the first layer clearly slows down and the
second layer can perform the convolution faster.

2.8.2. Speedup through FFT with fast pointwise multiplication

We can compute the FLOP count for the fast pointwise multiplication as described in
section 2.7 quite simply. The only thing that differs from fft-conv is the FLOP count

9The complex multiplication between two complex numbers (a+bi)·(c+di) is defined as (a+bi)·(c+di) =
(ac− bd) + (bc + ad)i.
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1e8 Pointwise FFT-Convolution complexity vs Caffe-Convolution complexity per layer

Pointwise FFT-Convolution FLOP count
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Figure 2.8.: Estimation for the FLOP count for the convolution layers within the reference
network. fft-conv is shown in blue while caffe-conv is shown in green.
The x-Axis shows each layer of the reference network and the y-Axis the
estimated FLOP count.

of the pointwise multiplication operation. We call this method fft-cgemm-conv because
of the complex general matrix multiplication (cgemm) we perform:

m := batch size, n := Noutput, k :=
c

g

#(fft-cgemm-conv) = #(fft-input) +
#(pw-cgemm)

m
+ #(ifft) + #(normalize)

#(pw-cgemm) = (HFFT · (WFFT/2 + 1) · g ·#(cgemm(m,n, k)))

#(cgemm(m,n, k)) = 8 ·min(m,n, k)log2(
7
8
) ·mnk

Note that cgemm has a higher FLOP count than gemm, because we perform complex
multiplications in contrast to gemm from before. We already saw in 2.7 that the fast
pointwise multiplication takes advantage of the number of images processed in a single
batch. Because of that we set m equal to the batch size and normalize the FLOP
count of #(pw-cgemm) by m again to be able to compare the total FLOP count to those
determined before. For our following figures we used a batch size of 500. In figure 2.9 a
direct comparison between the two different versions of the pointwise multiplications is
presented. We see that the estimated FLOP count of pw-cgemm consistently outperforms
pw-simple in every layer.

In figure 2.10 we give the FLOP count estimation for the three different ways to perform
the convolution. In contrast to figure 2.8 we see that fft-cgemm-conv outperforms
the standard Caffe convolution in all layers except the first one. Note the significant
theoretical speed-up possible in layers two and three.
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1e8 Simple Pointwise Multiplication complexity vs Fast Pointwise Multiplication complexity per layer
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Figure 2.9.: Estimation for the FLOP count for the convolution layers within the reference
network. pw-simple is shown in blue while pw-cgemm is shown in red.
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1e8 Pointwise FFT-Convolution (CGEMM and simple) complexity vs Caffe-Convolution complexity per layer

CGEMM FFT-Convolution FLOP count (Batch Size=500)
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Figure 2.10.: Estimation for the FLOP count for the convolution layers within the
reference Caffe network. fft-cgemm-conv is shown in red, fft-conv in
blue and caffe-conv in red.
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2.9. Backpropagation

We already explored the possibility of replacing the standard Caffe convolution method
by the FFT convolution within the forward pass in a CNN. Before we can put an image
into a CNN and perform the forward pass, kernels within the CNN have to be trained.
For neural networks, we do this with the well-known backpropagation algorithm.

In a CNN implemented in the Caffe framework, data is forwarded from bottom to top. A
layer receives its input data from a bottom vector (B) and writes its results into the top
vector (T). We note that Caffe performs a cross-correlation10 instead of a convolution.
In a convolution layer in Caffe we have Noutput kernels (K) per layer. We denote each
kernel’s dimension again with Kh and Kw. We can alter (2.2) to fit Caffe’s definitions and
define the 2D cross-correlation operation as performed for a single kernel in a convolution
layer. We have also omitted the depth dimension (K) of B and K in the following
definition to simplify it:

Ty,x =

Kh−1∑
h=0

Kw−1∑
w=0

B(y+h),(x+w) ·Kh,w (2.13)

Thus, we get the entire resulting vector for an output feature by T = B ?K. Note that
the cross-correlation operator (?) is different to the convolution operator (∗).

2.9.1. Derivation

The following derivation is based on ideas and notations from [1, 9]. In [19] similar results
were stated. Assume we have some error function E and we know the error values at a
certain convolutional layer. The backpropagation algorithm updates the weights of each
layer in such a way that we minimize our error function E. In Caffe the weights consist
out of the kernels K we defined before. We denote an error with respect to some blob A
by ∇A. We call this notation a gradient. We want to know the error with respect to the
kernel at each position i and j of the kernel:

(∇K)i,j =
∂ E

∂Ki,j

=

H−Kh∑
y=0

W−Kw∑
x=0

∂ E

∂Ty,x

∂Ty,x

∂Ki,j

=

H−Kh∑
y=0

W−Kw∑
x=0

∂ E

∂Ty,x

B(y+i),(x+j) (2.14)

Note that in (2.14) we made use of the chain rule and we therefore have to sum up
over all Ty,x our kernel contributed to during the forward pass. The resulting size of
T in the forward was H − Kh ×W − Kw. By looking at (2.13) we can easily follow
∂Ty,x

∂Ki,j
= B(y+i),(x+j). We see that this looks like a cross-correlation between the bottom

10In the cross-correlation operation the kernel is not flipped before calculating the weighted sum.



2.9 Backpropagation 25

data and the error with respect to the top data (∇T). Note that ∇T is something we
already know:

(∇K)i,j =
∂ E

∂Ki,j

=

H−Kh∑
y=0

W−Kw∑
x=0

∂ E

∂Ty,x

B(y+i),(x+j) =

=

H−Kh∑
y=0

W−Kw∑
x=0

B(y+i),(x+j)
∂ E

∂Ty,x

⇒ ∇K = B ?∇T

(2.15)

We can now update our kernels by K = K + η∇K with η being the learning rate.
We also need to propagate the error back to the previous layer. Note we perform the
backpropagation algorithm and therefore the previous layer is the bottom layer. Thus, we
need to calculate the error with respect to the bottom data (∇B) at every position x and
y. We apply the chain rule once more and sum up over every T which By,x contributes
to:

(∇B)y,x =
∂ E

∂By,x

=

Kh∑
h=0

Kw∑
w=0

∂ E

∂T(y−h),(x−w)

∂T(y−h),(x−w)

∂By,x

=

=

Kh∑
h=0

Kw∑
w=0

∂ E

∂T(y−h),(x−w)
·Kh,w

⇒ ∇B = ∇T ?KT = ∇T ∗K

(2.16)

By looking at (2.13) we see that
∂T(y−h),(x−w)

∂By,x
= Kh,w. Also note that in T(y−h),(x−w) h

and w are subtracted rather than added. We can interpret this by simply flipping the
kernel. We also know that a cross-correlation with a flipped kernel is nothing other than
a convolution.

2.9.2. Training with FFT

In the previous section, we derived the backpropagation algorithm for a convolution
layer in Caffe. Thus, we can also implement the backward step in Caffe with the FFT
methodology. We simply have to replace the cross-correlation and convolution with the
FFT version. Note that we can very easily do a cross-correlation in the frequency domain
by pointwise multiplying with the complex conjugate. This property is called cross-
correlation theorem and described in [2, p. 368]. Note the big size of the kernel within
the convolution described in (2.15) that could speed up the FFT training significantly.





3. Implementation in Caffe

In this chapter, we give some insights in our implementation of the convolution layer
using the FFT convolution. We begin with a short overview of the Caffe basics needed
to understand our implementation. We then go through the CPU version of a fast FFT
convolution. Afterward, we explain some of the tunings we did both on the CPU and
GPU to yield better performance in ways of saving arithmetic operations and memory.
Finally, we illustrate differences between the GPU implementation in contrast and the
CPU version.

3.1. Caffe

Caffe is implemented in C++ with interfaces built for MATLAB and Python. The code
is designed for extensibility and speed. The speed is defined as how many images can
be processed per second with a neural network built in Caffe. Caffe is an open source
project, which enabled us to extend Caffe for our needs easily.

3.1.1. Layers and Layer Factory

Caffe contains a Net class which holds layers. A layer is represented by the Layer class.
In Caffe, many different layers are implemented. Every one of those layers is a subclass
of the Layer or an intermediate class like BaseConvolutionLayer. We give some layers
needed by a DCNN as an example:

• DataLayer: The data layer provides inputs for a network. It reads images from a
database and forwards them to following layers.

• ConvolutionLayer: Implements the convolution within a neural network. We give
details of the forwarding process and convolution in section 3.2.

• PoolingLayer: Implements pooling in a neural network. E.g., a max-pooling layer
with size of 2× 2 takes the maximum out of every 2× 2 portion of an input and
forwards the result to the next layer.

27
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• ReLULayer: In Caffe activation functions are implemented in an additional layer
instead of being part of a fully connected layer or a convolution layer. ReLULayer
implements the f(x) = max(0, x) non-linearity.

• InnerProductLayer: Implements a fully connected layer in a neural network. This
layer treats the input as a simple vector and outputs a simple vector. Note that
the input’s height and width dimensions are reduced to 1.

All layers are instantiated with methods dedicated for each layer type in the so-called
layer_factory. Here, parameters important for the layer are considered while creating
a layer instance.

3.1.2. Protocol buffers

We can model Network architectures in Caffe with Google’s Protocol Buffers (protobuf)
library [11], which is used by Caffe. We can define the reference Caffe network with a
prototxt file:

Listing 3.1: Definition of the CaffeNet with Protocol Buffers

name: "CaffeNet"

input: "data"

input_shape {

dim: 10

dim: 3

dim: 227

dim: 227

}

layer {

name: "conv1"

type: "Convolution"

bottom: "data"

top: "conv1"

convolution_param {

num_output: 96

kernel_size: 11

stride: 4

}

}

// ...

Note that we only show the definitions of the first convolution layer in listing 3.1 and
the input data dimensions. We expect 10 images (our batch size) with 3 channels of
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size 227 × 227 as input. This input is considered the bottom data for the first layer
named conv1. We see that this layer is of type Convolution. The type determines the
method to be called from the layer_factory. Within the convolution_param section
we specify parameters for the convolution layer. We only need to specify the number
of output features, the kernel size and the stride. Parameters such as padding have
a default value (e.g. 0 for padding and 1 for stride) whereas the output sizes can be
determined from the input size and the parameters specified. We explain the convolution
parameters in more detail in section 3.2.2. The rest of the network is defined as stated in
table 2.1. In a pre-trained network, Caffe loads the weights from a corresponding file
which contains the weights, which are stored as defined in the protocol buffer file. If we
want to train a new network, Caffe creates this corresponding weight file.

3.1.3. Memory Layout and Data Storage

Caffe stores data in its own blob data type. This data type can easily transfer data
between the CPU and GPU. For the convolution layer, the blob data type is used for
the bottom, the weights and the top amongst others. Remember that we introduced the
four-dimensional nature of the convolution layer in section 2.3. On the top of figure 3.1,
we see an input with a batch size of 2 images with 3 channels of size 4 × 4. Note the
vertical line that divides the two images.

Figure 3.1.: The memory layout of a blob in Caffe. On the top the interpretation of the
raw data is shown, whereas on the bottom the memory layout is visualized.

On the bottom of the figure, we see the same data as it is stored in the memory. Each
two-dimensional channel of an image is stored in row-major order, whereas the channels
lie in memory consecutively. The other images are stored just behind the first one in the
same manner. This time, the vertical lines help to distinguish between single rows. We
can access each element in a blob like this:

The Element (n, k, h, w) is located at index: ((n ·K + k) ·H + h) ·W + w (3.1)

This formula applies to general 4-D blobs of size N × K × H ×W . The size of the
bottom blob inside a Caffe convolution layer is N ×K ×H ×W , whereas the size for
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the weight blob is different. As we explained before we have a weight dimensionality
of Noutput × K × Kh × Kw, thus, we have Noutput · K two-dimensional kernels of size
Kh ×Kw each.

3.2. Convolution Layer in Caffe

In Caffe, a layer is part of a directed acyclic graph which processes data from bottom
to top. I.e., we put images in the bottom of a network and we get a result at the top
of a network. In this section, we describe the characteristics of the convolution layer
implemented in Caffe. We emphasize that a Caffe convolution layer actually performs a
cross-correlation.

3.2.1. Mechanics of the Caffe Convolution Layer

A convolution layer gets a two-dimensional image with K channels as input from the layer
preceding it. We are handed this blob in the forward pass through a bottom variable. In
every layer, we can use this blob and modify it any way we want. Note that in the forward
pass we can only modify the top variable’s content which the network automatically
hands over to the subsequent layer. So we are forced to store the modifications in the
top variable. In the Caffe implementation of the convolution layer, the top variable’s size
is determined based on the input size and the layer parameters. We already explained
how to calculate the output size of a single output feature in equation (2.3). The overall
sizes of the bottom and top variable evaluate to:

bottom size = N ·K ·H ·W
top size = N ·Noutput ·Houtput ·Woutput

We now explain the calculation steps for a single image out of the batch of N images.
We know that a single input image has K channels and we have Noutput kernels with K
channels each. The Caffe convolution layer performs K two-dimensional convolutions
per output feature and sums their results up into a single result, therefore, yielding the
Noutput output features. Note that if we have configured our convolution layer’s stride to
be greater than 1, the layer evaluates the convolution formula (2.13) at every s-th x and
y of the bottom blob.

In figure 3.2 we visualize the mechanics of the Caffe convolution layer. We only explain
fundamental principles of a convolution layer not the actual convolution as performed in
a Caffe convolution layer. We already explored the convolution by matrix multiplication
technique in section 2.4. This technique is not visualized in the figure. For the figure, we
choose to use the sizes of the first layer of the reference Caffe network. On the left, a
single image is the bottom variable of the forward pass. We compute the convolution
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between every of the 3 channels and the corresponding channel kernel of a single weight
and sum up the results over the channels. We repeat this for all of the Noutput = 96
weights. Thus, we get 96 output features of size 55× 55. We write this result into the
top variable. This top blob is passed to subsequent layers as the bottom blob. Note that
the mechanics of the convolution layer are slightly different for layers that have the group
parameter set to a value greater than 1. We dive into those mechanics in section 3.2.2.

Figure 3.2.: The convolution as performed in the first layer of the reference Caffe network
in the Caffe convolution layer. Convolutions are performed for every output
feature with the same bottom and forwarded to the top blob.

3.2.2. Convolution Parameters

We now give a short overview of the parameters which we can set in a convolution layer
and how they affect the mechanics of the convolution layer. We have to understand the
consequences these parameters can have to properly implement the FFT convolution
layer in section 3.3.

kernel size The size of a single kernel affects the output size of the top blob via the
border pixels. A greater kernel size also increases the computational costs of a single
convolution. Both the kernel’s height and width are set to the kernel size.

num output The number of output features determines the number of output features
and corresponding weights, which will be trained for this layer. Each weight consists of



32 Implementation in Caffe

K 2D kernels. The greater this number, the more convolutions have to be computed, but
more output features can also increase the prediction accuracy of the neural network.

pad We need to zero-pad the bottom blob before performing the convolution. Note
that Caffe performs the convolution differently and we are only visualizing the effect of
the parameters here. If we pad a single channel of the bottom blob with pad set to 2, we
transform the channel’s matrix representation like this:


7 8 7 7
2 2 4 8
6 6 7 8
1 6 6 2

⇒



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 7 8 7 7 0 0
0 0 2 2 4 8 0 0
0 0 6 6 7 8 0 0
0 0 1 6 6 2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


In a convolution layer we perform the cross-correlations between the padded bottom and
the unaltered kernels like described in section 3.2.1.

stride We already mentioned the stride parameter in section 3.2.1. When s is set to a
value greater than 1 we only need to forward the result of the cross-correlation at every
s-th position both in the x and y dimension. If we have inputs of size 4× 4, kernels of
size 2× 2, pad set to 0 and s set to 2 we cross-correlate the kernel at the bold anchor
points in following input only: 

7 8 7 7
2 2 4 8
6 6 7 8
1 6 6 2


Note that we use (2.13) for cross-correlating the example and obtain an output of size
2× 2 following (2.3):

Houtput = (4 + 2 · 0− 2)/2 + 1 = 2

Woutput = (4 + 2 · 0− 2)/2 + 1 = 2

If we combine pad and stride we can specify the output size which will be forwarded to
the next layer. If we set pad to 1 in the our example, we can perform the cross-correlation
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at more anchor points yielding an output size of 3× 3:
0 0 0 0 0 0
0 7 8 7 7 0
0 2 2 4 8 0
0 6 6 7 8 0
0 1 6 6 2 0
0 0 0 0 0 0



group We already explained that the group parameter splits up the input channels
into g groups. This parameter can be used to emulate the setup of multiple GPUs as
used in [16]. If set to 2 both the bottom blob and the weights are split up into 2 chunks.
We explain differences in the mechanics of the convolution by using the second layer of
the reference Caffe network, where group = 2. In the forward pass the bottom blob is of
dimensions 1× 96× 27× 27 (for a batch size of N = 1), whereas we have 256 3D-filters
with a size of 5× 5 and a depth of 48 each.

In figure 3.3 we demonstrate the convolution with group parameter. We see the bottom
blob on the left and its 96 channels divided into two groups. Every group has a size of
1 × 48 × 27 × 27. In the middle, we see 256 3D-filters divided into two groups of 128
3D-filters with a kernel size of 5× 5 and 48 channels each. We perform the convolution
straightforward but only between matching groups. We cross-correlate the first half, of
the input blob only with weights from the first group. For every of the 128 weights in
the first half, we cross-correlate with the first half of the bottom data, sum up over the
channels and store the results in the first half of the top blob. This leaves us 128 output
features of size 27× 27 (Note that we have the same size for the top blob because pad=2).
We do the same thing for the second group accordingly and, therefore, get a total top
size of 1× 256× 27× 27.

Figure 3.3.: The convolution as performed in the first layer of the reference Caffe network
in the Caffe convolution layer. Cross-correlations are performed for every
output feature with the same bottom and forwarded to the top blob.
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3.3. New FFT Convolution Layer

For this thesis, we implemented a new convolutional Caffe layer. We generated a subclass
of Caffe’s ConvolutionLayer and called that layer ConvolutionLayerFFT. We both
implemented CPU and GPU versions written in C++ and CUDA-C respectively. We
only needed to alter other code files slightly for Caffe to use the new layer without
problems. In this section we give details of our implementation and how we achieve
compatibility to Caffe’s own convolution layer.

3.3.1. Libraries

For the implementation of our new layer, we used external highly optimized libraries to
perform mathematical operations as fast as possible. We use the FFTW [8] library for
taking the FFT on the CPU. We actually use Intel’s Math Kernel Library (MKL) [5]
which supports the FFTW interface and takes advantage of Intel CPUs. On the GPU, we
use NVIDIA’s CuFFT [7] library which also has an interface similar to the FFTW. We
take advantage of a CPU’s multi-threading capability by using OpenMP [20] commands.
If we link to the MKL library both the FFTW and OpenMP calls are replaced by Intel’s
own calls within the MKL library. We also use the MKL implementation of BLAS
for matrix-related methods on the CPU. On the GPU CuBLAS [6] takes care of the
matrix-related functions defined by the BLAS interface.

3.3.2. Preserving Compatibility

We require the new layer to preserve compatibility with Caffe’s existing convolution layer.
We presented the protocol buffers format in section 3.1.2 and adjusted the definition file
in such a way that a convolution layer can easily be replaced by the FFT version. We
can create the FFT version of the same layer described in listing 3.1 by using the engine

parameter of the convolution layer. We extended engine by a new option called FFT.
The definition for the first layer as ConvolutionLayerFFT looks like this:

Listing 3.2: CaffeNet’s first convolutional layer as FFT version

layer {

name: "conv1"

type: "Convolution"

bottom: "data"

top: "conv1"

convolution_param {

engine: FFT

num_output: 96
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kernel_size: 11

stride: 4

}

}

Because we want to compute the same thing but in a different manner we used the
existing engine parameter since the layer is still a convolution layer but only the
computation is done differently. The layer_factory’s method for creating a convolution
layer parses this argument and decides on the fly if to create a ConvolutionLayer or a
ConvolutionLayerFFT instance.

Because we compute the same thing and want to preserve compatibility within a network
(e.g. use ConvolutionLayer for layer 1 and ConvolutionLayerFFT for the other layers)
we have to make sure that our new layer produces the same top blob for a bottom blob
as Caffe’s layer. We do this by taking the FFT of the input followed by a pointwise
multiplication of the inputs and the weights in the frequency domain. At the end, we
take the IFFT and we can forward the time domain representation to the next layer.
Here any layer can follow expecting a time domain representation of the bottom blob
since not implicitly another FFT layer has to follow. This can be helpful because as we
have seen in 2.8 not every layer benefits from a convolution in the frequency domain.

3.3.3. Sizes and Memory Allocation

We found out in section 2.5.2 that the FFT only works for certain sample sizes, whereas
the Radix-2 FFT is faster than the Radix-3 FFT and so on. We also know that for
a convolution in the frequency domain, both the input and the kernel need to have
the same size since we can not evaluate a Hadamard product between two matrices of
different size. We now show how we can derive a minimal FFT compatible size for H.
We can derive the FFT compatible size for W analogously:

Htmp = H + max(2 · ph, Kh − 1)

HFFT =

{
Htmp + 16− (Htmp mod 16)) Htmp mod 16 > 0

Htmp otherwise

(3.2)

We first calculate a temporary size which equals to the minimal size possible needed to
calculate the convolution in the frequency domain. If we remember the time domain
representation we can instantly see that the bottom height has to be extended by a
minimum of Kh − 1 to be able to apply the kernel at every last pixel of each bottom’s
column. Because the convolution in frequency domain is equal to a circular convolution
we only need to consider the maximum between pad and the kernel size. In table 3.1
we see the optimal FFT sizes for each layer in the reference Caffe network. Note that
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layer 2–5 have optimal combinations of kernel size, padding and input size. If any of the
parameters were larger in these layers we would have to use FFT sizes greater by at least
16.

Table 3.1.: FFT sizes for the reference Caffe network.

H W Kh Kw ph pw HFFT WFFT

conv1 227 227 11 11 0 0 240 240
conv2 27 27 5 5 2 2 32 32
conv3 13 13 3 3 1 1 16 16
conv4 13 13 3 3 1 1 16 16
conv5 13 13 3 3 1 1 16 16

We used multiples of 16 to satisfy constraints made in the developer documentation of
CuFFT [7] to get the best performance out of both the CuFFT and FFTW library. We
list these constraints ordered by their importance regarding performance improvements:

1. We use single precision transforms since they require less bandwidth per computa-
tion than double precision transforms.

2. We restrict the transform size along all dimensions to be representable as 2a ·3b ·5c ·7d.
FFT libraries have highly optimized kernels for transforms which have these prime
factors. We get the best performances with powers of 2 followed by 3 and so on.

3. We use fewer distinct prime factors along each dimension because the libraries use
special computation paths.

4. We have to put the data of a single transform contiguous into the memory. If we
want to compute many transforms we have to arrange each dataset contiguous in
memory.

5. We have to perform multiple transforms at once since additional optimizations are
performed in batch mode by the libraries.

6. We need to ensure that the transform size of the first dimension in real-to-complex
transforms is a multiple of 4 because more efficient kernels are used to implement
the Hermitian symmetry.

7. We use out-of-place transforms, which have the drawback of consuming nearly
double the memory needed for in-place transforms. In section 3.4 we compare those
two modus operandi.

We see that a multiple 16 is a perfect size which satisfies constraints 2, 3 and 6. This
size promises better performance nearly every time. In [13] non-power-of-two sizes are
described to often perform faster than power-of-two problem sizes. If we use the FFTW
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library on a CPU, sizes of 3600 = 24 · 32 · 52 and 3840 = 28 · 3 · 5 both perform faster
than 4096 = 212.

We have to zero-pad the real data before transforming it. We give more details on this
procedure in section 3.3.4. Hence, we need to allocate memory for the padded real-valued
data and the transformed complex-valued data for out-of-place transforms. Theses sizes
evaluate to:

sizeRFFT = HFFT ·WFFT

sizeCFFT = HFFT · (WFFT/2 + 1)

Note that we use ·RFFT for denoting the FFT sizes of real-valued data and ·CFFT for complex-
valued data respectively. In every layer we need to allocate both real and complex arrays
for the weights, bottom and top data. We need to allocate memory for every single
weight (and channels per weight), input channels and output features for the weight,
bottom and top array respectively. The array sizes needed for the weights are

wsRFFT = Noutput ·
K

g
· sizeRFFT

wsCFFT = Noutput ·
K

g
· sizeCFFT.

We need to allocate memory for the padded bottom (remember we get N images in a
single batch) and its frequency representation with following sizes:

bsRFFT = N ·K · sizeRFFT
bsCFFT = N ·K · sizeCFFT

At last we need an array to store the complex result of the Hadamard product and its
inverse Fourier transform into. We need to allocate this array with following sizes:

tsFFT = N ·Noutput · sizeRFFT
tsFFT = N ·Noutput · sizeCFFT

In table 3.2 we see the additional memory each ConvolutionLayerFFT needs in contrast
to ConvolutionLayer when using the reference Caffe network with a batch size of
N = 500. The table shows the memory needed for single precision values (a single
precision value needs 4 bytes of storage and its complex counterpart 8 bytes). If we omit
the first layer (which did not promise any speed-up anyway), we need to allocate about
4101 MB of additional memory to store the frequency representations.

3.3.4. Data Preparation for FFT by Zero-Padding

We already allocated the memory to store the zero-padded bottom data and the weights.
We have to perform zero-padding in addition to the padding required by the p parameters.
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Table 3.2.: Additional memory needed for allocation in each ConvolutionLayerFFT of
the reference Caffe network with a batch size of 500.

wsRFFT wsCFFT bsRFFT bsCFFT tsRFFT tsCFFT
∑

conv1 63 MB 64 MB 330 MB 332 MB 10547 MB 10635 MB 21971 MB
conv2 48 MB 51 MB 188 MB 199 MB 500 MB 531 MB 1517 MB
conv3 96 MB 108 MB 125 MB 141 MB 188 MB 211 MB 868 MB
conv4 72 MB 81 MB 188 MB 211 MB 188 MB 211 MB 950 MB
conv5 48 MB 54 MB 188 MB 211 MB 125 MB 141 MB 766 MB∑

327 MB 358 MB 1017 MB 1094 MB 11547 MB 11729 MB 26072 MB

Assume we have an input bottom blob of size 2 × 3 × 3 × 3 and ph = pw set to 2 in
this layer. We evaluate HFFT = WFFT = 16 and, therefore, need to pad each of the 18
single matrices to a matrix of size 16× 16. We give an example for zero-padding such a
single matrix into an FFT-friendly padded matrix. Note the padding applied within the
zero-padding:

7 8 7
7 2 2
4 8 6

⇒



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 7 8 7 0 0 0 0 0 0 0 0 0 0 0
0 0 7 2 2 0 0 0 0 0 0 0 0 0 0 0
0 0 4 8 6 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(3.3)

In the previous example, we showed how to pad a single matrix of a bottom blob. We
pad every of the N ·K matrices the same way and store the results contiguous in an
array holding the padded bottom blob.

We access the unpadded bottom blob by using (3.1) as index:

((n ·K + k) ·H + h) ·W + w
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Following this definition, we can store each value of the unpadded bottom blob at index

((n ·K + k) ·HFFT + (h+ ph)) ·WFFT + (w + pw) =

(n ·K + k) · sizeRFFT + (h+ ph) ·WFFT + (w + pw)
(3.4)

in the padded bottom blob which we initialize with zeros only, whereas n ∈ [0;N), k ∈
[0;K), h ∈ [0;H), w ∈ [0;W ). We see that the first term (n ·K + k) · sizeRFFT calculates
the first pixel of image n and channel k in the padded bottom blob. We add (h+ ph) ·
WFFT + (w+ pw) to this index and get the destination index of the pixel h,w in the n-th
image with channel k of the unpadded bottom blob.

We can use the same indexing formulas for zero-padding the weight blobs, but we set
ph = pw to 0. Note that now the bottom blob and the weight have matrices of equal
dimensions and we can continue by taking the Fourier transforms of the prepared data.

3.3.5. Taking many FFTs at once

We prepared both the bottom blob and weight blob to have optimal sizes for taking the
FFT very effectively. We only need to transform the padded weight blob once since the
weights do not change during the forward pass. We can do this the first time we perform
a forward pass. Because the weights consist of Noutput single weights with K

g
kernels each,

we need to take the 2D-FFT of Noutput · Kg time domain representations of the kernels
in each layer to get the frequency representation of the weight blob. The bottom blob
changes every forward pass since we can pass the network different images every time.
In every forward pass, we need to take the 2D-FFT of N ·K different matrices.

We discussed performance optimization constraints on parameters for the FFT in the
previous section. In the CuFFT library documentation, NVIDIA suggested these to
tune Fast Fourier Transforms for best performance. In constraint 5 we stated that we
need to perform multiple transforms at once. Both FFTW and CuFFT support this
batched mode of the FFT. In both libraries, we have to provide pointers to the source and
destination arrays and parameters that exactly define the FFT. First, we need to create
a plan where we tell the library on which dimensions to operate. Within the FFTW
library we create an FFT plan with the method call fftwf plan many dft r2c. This
method creates a plan for many real-to-complex DFTs. We need to provide following
parameters:

• rank The dimensionality of the transform. In our case, the rank is 2 because we
want to perform a 2D-FFT.

• n We need to provide the sample size. For the transforms we want to perform, the
sample size is an array with values: {HFFT,WFFT}.
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• howmany The number of transforms to perform in the batch. For the weight
transform we need to provide Noutput · Kg and N ·K for the bottom transform.

• in The pointer to the input data. We provide the padded blobs here.

• inembed The size of each matrix in the input data. Each padded matrix has a
size of HFFT ×WFFT so we can provide n again.

• istride The stride in the input data. Because the padded blob is contiguous in
memory, we simply provide 1.

• idist The distance in memory between each single matrix to take the FFT for.
The distance between each of the transforms is HFFT ·WFFT

• out The pointer where to store the frequency domain representation into.

• onembed The size of each matrix in the output data. We perform a real-to-
complex transform and because of the Hermitian symmetry we need to provide
{HFFT,WFFT/2 + 1} as size for a single output matrix.

• ostride The output data is also contiguous in memory and, therefore, we set the
output stride to 1 as well.

• odist We know the size of each matrix in the output and thus set the distance
between two matrices to HFFT · (WFFT/2 + 1).

• flags We can provide a flag to the planner function where we can choose the
method how the library chooses its way to find out the fastest way to compute the
FFT. We use FFTW ESTIMATE which uses a simple heuristic that picks a (probably
sub-optimal) plan quickly.

After we create the plan, we can simply execute it and the DFT of our input data is
written into the output array. As we mentioned before, Intel’s MKL provides the same
interface as FFTW but uses manufacturer-optimized plans solely designed for Intel CPUs
which can yield in better performance. NVIDIA provides an interface very similar to
the FFTW interface. We have to provide the same parameters as described above for
creating a plan with the exception that we need to pass input and output pointers not
until we want to execute the plan.

3.3.6. Hadamard Product in the Frequency Domain

We already know that we have to evaluate the Hadamard Product between the frequency
domain representations of the padded bottom and padded weight blob. The underlying
idea is quite simple as we only have to take matching values out of each array and perform
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a complex multiplication. There are some obstacles we want to discuss in this section
which may not be immediately obvious.

Evaluating the Hadamard product between two matrices is simple. We just have to
find the correct position of those matrices in the memory and store the result at the
right position. Remember that we have to reuse the bottom blob for every of the Noutput

output features. In listing 3.3 we see the code for evaluating the Hadamard product on
the CPU. The listing shows the naive version we named pw-simple in section 2.8.1. In
the second line, we calculate the size of a single group. When we set the group parameter
to a value greater than 1, a single group’s size equals 1

g
of the total number of weights.

We loop over every image in the batch in line 4, over every output feature in line 5 and
every pixel inside an image in line 6. Note that variables within the listing are defined
slightly different than the previous definitions:

int batch size = N;

int N output = Noutput;

int H = HFFT;

int W = WFFT/2 + 1;

int K =
K

g
;

(3.5)

In line 8 we determine in which group we currently operate since n ∈ [0;Noutput). Hence,
group idx holds a value ∈ [0; g) indicating the index of the group. In lines 10–11 we
set the pointer of the bottom data to the current image in the batch. In lines 13–14 we
set the pointer of the result to the corresponding output regarding the current image
in the batch. In line 16 we loop over the channels residing in a group. Because the
actual number of channels in the bottom blob is g · K (note that K is from (3.5) here),
we have to calculate the channel index inside the bottom blob in line 17. We calculate
the offset to the corresponding weight in line 18. In lines 20–22 we set the pointers of
the three arrays to their correct positions and retrieve their values and pointers in lines
24–26 respectively. We reuse the same bottom blob for every output feature. In line
28 we perform a complex multiplication between a single value of the bottom blob and
weight blob and add its result into the resulting top array. If we set the third parameter
of fft cpu multiply complex to true, a complex multiplication between the bottom
value and the conjugated weight value is performed. We do this because Caffe actually
performs a cross-correlation in the convolution layer and we have to multiply with the
complex conjugate according to the cross-correlation theorem as described in [2]. Note
that we already get rid of the depth dimension here as the Fourier transform is linear.
Therefore, it does not matter if we sum up before taking the IFFT or afterward. We
reduce the number of IFFTs to take which results in better performance.

Listing 3.3: pw-simple way of evaluating the Hadamard product
1 // Defines the size of a single group.

2 const int weight_group_size = N_output / this ->group_;

3
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4 for (int batch_idx = 0; batch_idx < N; ++ batch_idx) {

5 for (int n = 0; n < N_output; ++n) {

6 for (int hw = 0; hw < H * W; ++hw) {

7 // Check which group_idx we are in

8 const int group_idx = n / weight_group_size;

9 // Calculate the offset in bottom to batch_idx image

10 const int bottom_offset = K * this ->group_ * H * W * batch_idx;

11 std::complex <Dtype > *bottom_data = this_bottom_data + bottom_offset;

12 // Calculate the offset in top to batch_idx image

13 const int top_offset = N_output * H * W * batch_idx;

14 std::complex <Dtype > *top_data = this ->ptwise_result + top_offset;

15

16 for (int k = 0; k < K; ++k) {

17 const int bottom_k = k + group_idx * K;

18 const int weight_offset = (n * K + k);

19

20 const int bottom_idx = bottom_k * H * W + hw;

21 const int weight_idx = weight_offset * H * W + hw;

22 const int top_idx = n * H * W + hw;

23

24 const std::complex <Dtype > single_bottom = bottom_data[bottom_idx ];

25 const std::complex <Dtype > single_weight = weight_complex[weight_idx ];

26 std::complex <Dtype > *single_top = top_data + top_idx;

27

28 *single_top += fft_cpu_multiply_complex(single_bottom , single_weight , true);

29 }

30 }

31 }

32 }

3.3.7. Fast Hadamard Product through Matrix Multiplication

Our implementation of the convolution layer also supports a faster way of computing the
Hadamard product as introduced in section 2.7. If we choose this method of computing
the Hadamard product we need to permute the dimensions of the frequency domain
representations of the bottom and weight blob. We do this right after the frequency
domain representations are computed. The permutation transforms the data from a
N ×K ×H ×W representation into a H ×W ×N ×K representation. We can easily
do this by interchanging the indices in (3.1) accordingly.

We know that in this case H = HFFT and W = WFFT/2 + 1 for both the bottom blob
and weight blob. As we already explored, we now need to perform HFFT · (WFFT/2 + 1)
matrix multiplications. We see that the inner dimensions of the permuted frequency
representations of the bottom blob and weight blob agree in such a way that we are able
to perform matrix multiplications. We now use layer 1 of the reference Caffe network
and the batch size is 10. We need to perform 240 · 121 matrix multiplications with the
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sizes shown:

B

(10×3)

· W

(96×3)

T

= T

(10×96)

BLAS libraries also offer methods to compute complex matrix multiplications. We
perform these matrix multiplications in a single batch. This way the libraries (we use
MKL on the CPU and CuBLAS on the GPU) take care of efficiently distributing the
matrix multiplications along threads. We have to prepare three arrays of pointers which
point to the correct positions of each single matrix in memory before calling the batched
matrix multiplication call. We now give the size of a single bottom matrix, weight matrix,
and top matrix respectively:

sizebottom = N ·K

sizeweight = Noutput ·
K

g

sizetop = Noutput ·N

We can easily calculate the offsets with respect to the beginning of the permuted blobs
to receive the pointers for corresponding matrices:

ptr
h,w
bottom = ptr

0,0
bottom + (h ·W + w) · sizebottom

ptr
h,w
weight = ptr

0,0
weight + (h ·W + w) · sizeweight

ptr
h,w
top = ptr

0,0
top + (h ·W + w) · sizetop

(3.6)

Note that h ∈ [0;H), w ∈ [0;W ) and H = HFFT and W = WFFT/2 + 1 like we explained
before. ptr0,0bottom, ptr0,0weight, ptr

0,0
top are pointers to the beginning of the permuted bottom,

weight or top blob respectively. While these definitions would suffice for the case were
g = 1 we have to perform even more but smaller matrix multiplications in the case were
g > 1. We need to do this for every group. Thus, we need to perform 2 times the matrix
multiplications if g = 2. In layer 2 of the reference Caffe network we need to perform
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32 · 17 · 2 matrix multiplications as shown below:

B
(10×48)

· W

(128×48)

T

= T
(10×128)

We need to add offsets to the pointer locations calculated in (3.6) for each of the groups.
The offset of a single group can be obtained this way:

offsetbottom =
sizebottom

N · g
offsetweight =

sizeweight

g

offsettop =
sizetop

N · g

(3.7)

We can now determine the pointers of all matrices belonging together by adding the
index of a group (ĝ ∈ [0; g)) to the equations introduced in (3.6):

ptr
h,w,ĝ
bottom = ptr

h,w
bottom + ĝ · offsetbottom

ptr
h,w,ĝ
weight = ptr

h,w
weight + ĝ · offsetweight

ptr
h,w,ĝ
top = ptr

h,w
top + ĝ · offsettop

(3.8)

We can easily fill the three pointer arrays by storing all corresponding pointers which we
calculate by iterating over all H,W, g and using (3.8) to find the right offsets in memory.

The BLAS call for performing a batched complex matrix multiplication with single
precision is called cblas cgemm batch and is only available in the Intel MKL and
CuBLAS libraries. We have to provide three arrays of pointers, which point to a memory
location where the corresponding matrix is located. We also need to tell the method
how to interpret the source matrices before performing the actual matrix multiplication.
For the bottom matrices, we provide the parameter CblasNoTrans which says not to
transpose the matrices. We need to perform multiplications with the complex conjugate
as discovered in 3.3.6 and also need to transpose those matrices like we visualized before.
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Thus, we provide CblasConjTrans for the weights matrices. Of course we also need to
provide the matrix sizes Ṁ, Ṅ and K̇ (Ṁ = N, Ṅ = Noutput

g
, K̇ = K

g
).

Even though we took care of the group parameter when we calculated the offsets within
the blobs, the matrices are in a wrong order if the batch size parameter is set to a value
greater than 1. We use the second layer of the reference Caffe network to demonstrate
the data layout with group parameter set to g = 2 and the batch size set to N = 10.
After permuting the bottom blob the dimensions of each bottom matrix are 10× 96, but
actually the bottom blob has to be divided into 2 groups (B0 and B1):

B
(10×96)

⇒ B0

(10×48)
B1

(10×48)

If we pass a pointer to each matrix B in cblas cgemm batch and also tell the method
that the size of a bottom matrix is 10× 48 not B0 will be used, but the first 480 values
within B will be interpreted as B0. B is stored in row-major order so cblas cgemm batch

would actually treat B for the first and second group like this:

B0

(5×96)

B1

(5×96)

We can provide a parameter that specifies the leading dimension for every of the matrices
involved in the matrix multiplication. If we set the leading dimension to 2 · 48 for the
bottom matrices the group parameter will be handled correctly. Because the order in the
top blob conforms to the order in the top blob we have to adjust its leading dimension
accordingly. We set the leading dimension of the three matrices to the following values:

ldbottom = K̇ · g = K

ldweight = K̇ =
K

g

ldtop = Ṅ · g = Noutput

(3.9)

Altogether we now perform the matrix multiplications needed to get a permuted top blob.
If we reverse the permutation, we get the equal result as calculated with pw-simple in
the section before. We named the fast method of performing the Hadamard product
pw-cgemm in section 2.8.2 when we estimated possible speed-ups. As with pw-simple,
we now need to take the IFFT and normalize the real-valued result.

3.3.8. IFFT and Normalization

In the previous sections, we computed the cross-correlation in the frequency domain, but
the following layers expect real-valued inputs. These non-linearity layers require time
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domain representations of the data. Therefore, we need to take the IFFT of the complex-
valued Hadamard product and write it into the top blob, which is forwarded to the next
layers. We need to perform multiple inverse transforms here. For every image in a batch
and output feature, we take the IFFT. Hence we can use a batched version to process
N ·Noutput transforms. Taking the IFFT with libraries that support FFTW like interfaces
is very simple. In 3.3.5 we introduced fftwf plan many dft r2c for taking many single
precision real-to-complex DFTs. We take the IFFT by simply using the planner for
complex-to-real DFTs, which creates an IFFT plan. fftwf plan many dft c2r takes
the same parameters as the real-to-complex planner method. We only need to make sure
to inverse some of the input and output parameters in contrast to the real-to-complex
planner method:

• in We have to provide the pointer where the Hadamard product’s result is stored.
In the case of listing 3.3 this would be this->ptwise result.

• inembed The input matrices’ sizes are {HFFT,WFFT/2 + 1} now.

• istride The stride of the Hadamard product’s result is also 1.

• idist The distance in memory between two single complex-valued matrices results
from inembed: HFFT · (WFFT/2 + 1)

• out The pointer to an array where the real-valued result of the cross-correlation
should be stored.

• onembed The size of each real-valued matrix is the same as for a bottom blob or
a weight blob: {HFFT,WFFT}

• ostride We want the result to be contiguous in memory so we set ostride to 1 here.

• odist Follows from onembed: HFFT ·WFFT.

We now have a real-valued blob containing values which we want to write into the top
blob, but we have to normalize those values and pick the right ones to write into the top
blob. Each matrix has a size of HFFT ×WFFT but we need to forward matrices of size
Houtput×Woutput. If we look at the first layer, we need to reduce the size from 240×240 to
55× 55. Because we already applied ph and pw when zero-padding, the bottom blob valid
cross-correlation results are located the top left corner of each matrix in the real-valued
blob. Note that we did not apply the stride parameter of the convolution layer yet,
which is not possible in the frequency domain. We performed a cross-correlation at every
position and need to write every s-th pixel of each dimension into the top blob. We also
need to normalize every value by 1

HFFT·WFFT
like described in (2.10) before we write into

the top blob.
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In listing 3.4 we show how the normalization is handled in our implementation. We
first calculate the normalization term 1

HFFT·WFFT
in line 2 and then loop over N, K, H, W

which are set to N , Noutput, Houtput, Woutput respectively. For every single matrix needed
to store in the top blob, we calculate the offset within our real-valued result in line 5.
In lines 13–14 we calculate the index in the real-valued blob based on s and p. p is
set to 0 in this particular case, because valid results are stored in the top-left corner
of the real-valued matrices. (We need p for other cases we explain in section 3.3.10.)
In lines 16–17 we calculate corresponding indexes in the real-valued blob and top blob.
We normalize the picked value in line 20 and write it into the top blob in line 24. (The
parameter add to result is set to false and will be discussed in section 3.3.10.)

Listing 3.4: Applying stride and normalization to cross-correlation result

1 Dtype ifft_normalize_factor = 1. / (fft_width * fft_height);

2

3 for (int n = 0; n < N; ++n) {

4 for (int k = 0; k < K; ++k) {

5 const int offset_ifft_real = (n * K + k) * (fft_width * fft_height);

6

7 for (int h = 0; h < H; ++h)

8 {

9 for (int w = 0; w < W; ++w)

10 {

11 // The first valid result in the real conv array is at pad_h , pad_w.

12 // We step by the stride to pick the values of interest.

13 int h_idx = pad_h + h * stride_h;

14 int w_idx = pad_w + w * stride_w;

15

16 const int top_idx = ((n * K + k) * H + h) * W + w;

17 const int ifft_real_idx = offset_ifft_real + h_idx * fft_width + w_idx;

18

19 // Normalize result and write it into top blob

20 Dtype tmp_result = iffted_result[ifft_real_idx] * ifft_normalize_factor;

21 if (add_to_result) {

22 top[top_idx] += tmp_result;

23 } else {

24 top[top_idx] = tmp_result;

25 }

26 }

27 }

28 }

29 }

3.3.9. Forward Pass

We introduced every necessary part to perform a forward pass of a convolution layer in the
frequency domain. The ConvolutionLayerFFT now produces the exact same result like
Caffe’s own ConvolutionLayer. We assemble the parts of the previous sections and give
an overview over a complete forward pass, which we visualize in figure 3.4. We only need
to set up the FFT convolution layer (fft set up()) in the first forward pass. Here we
initialize sizes and allocate the memory needed in the layer like in section 3.3.3. We need
to pad the real-valued weight blob (see section 3.3.4) before taking the real-to-complex
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FFT. If we choose to use the fast Hadamard product (pw-cgemm) we need to permute
the frequency representation of the weight blob before we can continue. Otherwise, we
do not need to alter the frequency representation of the weights.

In every single pass, we need to transform the bottom blob, which we do in fft bottom().
Similar to the weight transformation we pad the bottom blob (note that we apply ph and
pw here like in (3.3)) to be able to take the real-to-complex FFT afterwards. If pw-cgemm
is enabled, we need to permute the frequency representation of the bottom blob also.

Having computed the frequency representations for both the bottom blob and weight
blob, we need to evaluate the Hadamard product now. We can either use the simple way
(pw simple()) explained in section 3.3.6 or the fast version (pw cgemm()) described in
section 3.3.7. Of course we need to undo the permutation if we use pw cgemm(). At the
end, we only need to take the IFFT and normalize the real-valued result as described in
section 3.3.8. Note the re-usability of methods like pad real blob() and permute 4d()

which we will also need in the backward pass.

fft_set_up()

init_alloc()

pad_real_blob()

fft_r2c()

permute_4d()

fft_bottom()

pad_real_blob()

fft_r2c()

permute_4d()

fft_convolve()

pw_simple() pw_cgemm()

fft_c2r()

permute_4d()

normalize()

first pass

!(first pass)

cgemm

!cgemm cgemm

!cgemm

cgemm!cgemm

Figure 3.4.: A simplified activity diagram of the forward pass as performed in
ConvolutionLayerFFT.

3.3.10. Backward Pass

In section 2.9 we derived the backpropagation algorithm for a convolution layer. We
concluded that a backward pass in Caffe’s convolution layer can be expressed through a
cross-correlation and a convolution.

Weight update step At first we need to update weight values like we derived in (2.15).
In Caffe terminology this formula is equal to following cross-correlation:

weight diff = bottom ? top diff
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We get handed the top diff in the backward pass as this is the error in the current layer
which we know already. Like in the forward pass we need to zero-pad the bottom blob
and take its FFT. Obviously, we need to process top diff the same way before we can
compute the cross-correlation in the frequency domain. Because the size of top diff,
which has the same size as the top blob, is often smaller than the bottom blob we need
to correctly upscale this data at first. Thereto we alter the padding algorithm presented
in section 3.3.4 by extending (3.4) to support a stride parameter s as well:

(n ·K + k) · sizeRFFT + (h · s+ ph) ·WFFT + (w · s+ pw) (3.10)

If we use s = 3 for our example demonstrated in (3.3) we get a slightly different result:

7 8 7
7 2 2
4 8 6

⇒



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 7 0 0 8 0 0 7 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 7 0 0 2 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 4 0 0 8 0 0 6 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(3.11)

We use (3.10) to zero-pad top diff with ph = pw set to 0 and s set to the layer’s stride
parameter. Every other parameter is set as explained in section 3.3.4. Now we can
easily evaluate the Hadamard product, take the IFFT and normalize the result yielding
weight diff. For normalizing we use s = 1 and ph = pw = 0. Caffe automatically updates
the real-valued weights accordingly. We reuse the memory allocated in section 3.3.3 since
the sizes match but we only use a different order of evaluation. Afterwards we normalize
with stride h = stride w = 1 and pad h = pad w = 0 with the algorithm presented in
listing 3.4. Because we accumulate the weight diff onto the old weight diff, we set
add to result to true here.

Propagating error to bottom layer We need to propagate the error to the previous
layer. We express (2.16) like this in Caffe terminology:

bottom diff = top diff ∗ weight
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Note that this formula now actually requires a convolution (∗) to be computed instead
of a cross-correlation(?). Therefore, we do not multiply by the complex conjugate. We
need to pad the top diff like before and evaluate Hadamard product with the updated
weights. Hence, we have to update the frequency representation of the weights before.
Again we use the same memory we allocated in section 3.3.3. For normalization we set
stride h = stride w = 1 and pad h = ph, pad w = pw. We need to set add to result

to false.

Adjusting parameters of fast Hadamard product We introduced parameters used by
pw-cgemm to properly multiply corresponding matrices with each other. In table 3.4.1
we give an overview over different values needed to perform the cross-correlations and
convolution respectively. We named the single cross-correlation in the forward pass FW.
In the backward pass we called the weight update cross-correlation W while we denoted
the backpropagation convolution by BW. The kind of cross-correlation/convolution is
denoted in the first column of the table. Note the ·H on top of some matrices which
indicates the conjugate transpose, while ·T denotes a simple transpose. In the second
column we visualize the matrix-multiplications which will be performedHFFT·(WFFT/2+1)
times. All sizes are given for the second layer in the reference Caffe network therefore
yielding 2 matrix multiplications (one for each group) per cross-correlation/convolution.
Every matrix multiplication in the second column is of the form a · b = c. We used B,
W and T for the bottom blob, weight blob and top blob respectively. A prefixed ∇
operator indicates the corresponding diff blob. In the third column the actual resulting
matrix out of the two matrix-multiplications in showed. We list the corresponding sizes
as introduced for the forward pass in section 3.3.7 in columns 4–9. The indices a,b, c
are chosen to match the order of matrix multiplication in column 2 (a · b = c).

3.4. Further Optimizations

In this section, we describe further optimizations adopted to increase the performance of
the frequency domain convolution in our implementation of the convolution layer. We
implemented both CPU and GPU versions of these optimizations.

3.4.1. Parallelizing Workload

We took advantage of the performance boosts possible by distributing workload onto
multiple CPU cores or CUDA cores on NVIDIA GPUs. We enabled OpenMP [20] on
the CPU, thereupon, MKL automatically parallelizes its FFT implementation. We
furthermore enabled all our loops to distribute the workload among threads.



CGEMM group 0 Result sizea sizeb sizec lda ldb ldc

FW

B

(10⇥48)

· W

(128⇥48)

H

= T

(10⇥128)
T

(10⇥256)

N ·K Noutput · Kg Noutput ·N
K K

g NoutputCGEMM group 1 offseta offsetb offsetc

B

(10⇥48)

· W

(128⇥48)

H

= T

(10⇥128)
sizea
N ·g

sizeb
g

sizec
N ·g

CGEMM group 0 Result sizea sizeb sizec lda ldb ldc

W

rT

(10⇥128)

H

· B

(10⇥48)

= rW

(128⇥48) rW

(256⇥48)

Noutput ·N N ·K Noutput · Kg
Noutput K K

gCGEMM group 1 offseta offsetb offsetc

rT

(10⇥128)

H

· B

(10⇥48)

= rW

(128⇥48)
sizea
N ·g

sizeb
N ·g

sizec
g

CGEMM group 0 Result sizea sizeb sizec lda ldb ldc

BW

T

(10⇥128)

· W

(128⇥48)

= rB

(10⇥48) rB

(10⇥96)

Noutput ·N Noutput · Kg N ·K
K K

g NoutputCGEMM group 1 offseta offsetb offsetc

T

(10⇥128)

· W

(128⇥48)

= rB

(10⇥48)
sizea
N ·g

sizeb
g

sizec
N ·g

Table 3.3.: Parameters for the three cgemm calls needed for the forward (FW) and backward pass (W and BW).
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Our algorithm for zero-padding the data introduced in section 3.3.4 loops over 4 di-
mensions, which allowed us to use an OpenMP notation for condensing the loops and
redistributing the workload among different threads. Every possible thread accesses
distinct locations in memory, hence, we did not need to synchronize concurrent memory
accesses.

In listing 3.3 we introduced the simple algorithm for evaluating the Hadamard product.
We could also easily parallelize the three loops in lines 4–6 with OpenMP. The last
loop in line 16 is looping over the channels and summing the results up in line 28.
Because we access the same memory location for each of the K channels in this line
we cannot parallelize this last loop, otherwise resulting in indeterminate results. For
pw-cgemm, we used the batched matrix multiplication call within Intel’s MKL library,
which automatically distributes single matrix multiplications among threads yielding
a high performance. We also parallelized the normalization algorithm introduced in
listing 3.4 by using OpenMP commands. Here we parallelized over the first two loops.

We also implemented all parallelizations presented here for the GPU. GPUs support
heavy parallelizing without the use of OpenMP and are designed to fulfill such tasks very
effectively.

3.4.2. Fast 4D Transpose

We already proposed a fast way for evaluating the Hadamard product in sections 2.7 and
3.3.7. In the same paper [25] we adapted this idea from, a fast way for permuting the
data beforehand is proposed. The certain transposition from a N ×K×H×W layout to
a H ×W ×N ×K layout preserves the order and only interchanges the parts separated
after the second dimension (N ×K�H ×W ). In section 3.3.7 we introduced the simple
idea to simply change the indexing dimension in (3.1). Because of non-consecutive
random memory accesses this idea slows pw-cgemm down so much, it even performs slower
than pw-simple. In both the MKL and CuBLAS libraries methods for transposing 2D
matrices exist. We can take advantage of those tuned methods by expressing our 4D
transpose as a 2D matrix transpose. Assume we have a blob with a size of 3× 2× 2× 2:

[
1 2
3 4

] [
5 6
7 8

] [
9 10
11 12

] [
13 14
15 16

] [
17 18
19 20

] [
21 22
23 24

]

If we transpose this to be of a 2× 2× 3× 2 layout the result looks like this:

 1 5
9 13
17 21

 2 6
10 14
18 22

 3 7
11 15
19 23

 4 8
12 16
20 24
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We can interpret the row-major representation of the source blob as a 2D-matrix of size
H ·W ×N ·K = 6× 4 and 2D transpose this matrix:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24



T

=


1 5 9 13 17 21
2 6 10 14 18 22
3 7 11 15 19 23
4 8 12 16 20 24



If we reinterpret the row-major memory of the transposed matrix as an 4D-array with a
size of H ×W ×N ×K we get the desired result in a fast and highly optimized way. We
can easily 2D transpose our blobs with methods available in Intel’s MKL (not in other
CPU BLAS libraries) and in the NVIDIA CuBLAS library.

3.4.3. In-place FFT

We also introduce an option to specify the kind of FFT to take within the protocol buffer
definition file. We name this parameter fft inplace, which is set to false by default.
In section 3.3.3 we allocated both space for the real-valued blob and its complex-valued
frequency representations. To save memory, we can only allocate the complex-valued
arrays and perform an in-place FFT instead of an out-of-place FFT. We forfeit a little
performance while conserving valuable memory on the GPU. We prioritized an out-of-
place FFT last within the list of constraints proposed in section 3.3.3, which allows us to
use less memory while a drop in performance is hardly noticeable.

In table 3.4 we depict the memory savings for layers 2–5 with a batch size of N = 500
in the reference Caffe network. We highlighted the sizes used for allocating real-valued
memory in red. We do not need to allocate these in an in-place FFT mode. In the
last two columns, we see both memory needed for the real-valued and complex-valued
representations respectively. We can actually save around 1952 MB of memory by using
the in-place FFT, which is quite a lot even on modern GPUs. Thus, we only need to
allocate additional 2149 MB of memory instead of 4101 MB.

Table 3.4.: Memory savings in ConvolutionLayerFFT through using an in-place FFT
instead of an out-of-place FFT.

wsRFFT wsCFFT bsRFFT bsCFFT tsRFFT tsCFFT
∑R ∑C

conv2 48 MB 51 MB 188 MB 199 MB 500 MB 531 MB 736 MB 781 MB
conv3 96 MB 108 MB 125 MB 141 MB 188 MB 211 MB 408 MB 460 MB
conv4 72 MB 81 MB 188 MB 211 MB 188 MB 211 MB 447 MB 503 MB
conv5 48 MB 54 MB 188 MB 211 MB 125 MB 141 MB 360 MB 406 MB∑

264 MB 294 MB 688 MB 762 MB 1000 MB 1094 MB 1952 MB 2149 MB
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For the in-place FFT to work, we need to store the real-valued data in the complex array
with correct in-memory strides that correspond to those used for the complex array. The
stride between two single matrices is H ·W in the real valued array whereas we have to
use a stride of H · (W/2 + 1) · 2 when we store real-valued data in a complex array. Note
that we need to multiply by 2, because a complex value needs twice the storage than a
real value.

3.5. GPU Implementation

Most implementation details discussed in the previous sections focused on the CPU
implementation. We also implemented a GPU version of the ConvolutionLayerFFT

which we optimized to take advantage of the architecture of NVIDIA GPUs. We translated
all loops parallelized with OpenMP in the CPU implementation into CUDA kernels.
A CUDA kernel [15] is an extremely lightweight function running on the GPU with
little creation overhead. CUDA is defined by the ability to switch between those kernels
instantly. In contrast to a CPU, CUDA uses thousands of threads which each executes
the same kernel. Each thread has an ID which it uses to calculate indices and memory
addresses. We implemented the innermost parts of our loops as kernels. CUDA also
comes with tuned libraries such as CuFFT and CuBLAS, which support fast Fourier
transforms and a BLAS interface respectively. We used CuFFT to take the Fourier and
inverse Fourier transforms while we used CuBLAS for matrix related operations such as
matrix transposition and matrix multiplication.



4. Evaluation

In section 2.8 we calculated theoretical speed-ups our method of computing the convolution
can achieve within a convolution layer. In this chapter we test our layer with Caffe’s
built-in benchmark mode. We test CPU and GPU implementations and compare them
with Caffe’s own convolution layer. For each implementation we compare the performance
by altering parameters such as the batch size, the method of evaluating the Hadamard
product or using an in-place FFT instead of an out-of-place FFT. We first test with
a real-world example of a DCNN - the reference Caffe network, which is based on the
ImageNet introduced by Krizhevsky et al. [16]. Moreover we compare the training of the
complete reference Caffe network with our method in contrast to a conventional training.
Afterward, we spend some thoughts on how to design convolution layer’s sizes in a way
to achieve even better performances. Finally, we assure our implementation yields the
exact same results as Caffe’s convolution layer.

4.1. Test Setup

We measured all performance tests on workstation running Ubuntu 14.04.3 LTS Server.
The CPU we used is an Intel® Xeon® Processor E5-2680 v2 with 10 cores, 20 threads
and 25 MB of cache. We had 64 GB of usable main memory. All GPU performance tests
were conducted on a NVIDIA® GeForce GTX TITAN X with 12288 MB of memory and
3072 CUDA cores.

We time forward and backward passes of the reference Caffe network by using the
validation set provided by the ILSVRC challenge of 2012 [22] containing 50,000 images.
We train our network in section 4.3 using the ILSVRC 2012 training set containing
1.2 million images.

We changed the protocol buffer definitions of the reference Caffe network in a test network
file, which contains uses ILSVRC 2012 validation set as data source. We altered the
batch size for some of our tests. We also changed the protocol buffer file in such a way,
that we both use the FFT convolution layer and the standard convolution layer.

55
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4.2. Performance on the Reference Caffe Network

We now compare our implementation of the convolution layer versus Caffe’s own convolu-
tion layer on the reference Caffe network (see section 2.3 for the architecture). First, we
compare the performance on the GPU, because this is the preferred mode for computing
DCNNs in Caffe. We test both the forward pass and the weight update step of the
backward pass with Caffe’s time mode, which times processing time in each layer and
averages automatically over the number of iterations. For every test we run 200 iterations
and use the average time measured. Because the first layer of the reference Caffe network
does not promise any possible speed-ups, but even decreases the network’s performance
as we found out in section 2.8, we only use a ConvolutionLayerFFT in convolution
layers 2–5. In the first layer we always use a conventional ConvolutionLayer. We
name the Caffe convolution, the FFT convolution using the simple Hadamard product
and the FFT convolution using the fast Hadamard product caffe-conv, fft-conv and
fft-cgemm-conv respectively. These naming conventions conform to those introduced in
section 2.8.

4.2.1. GPU Performance

4.2.1.1. Forward Pass

For the timings of the forward pass we use a fixed batch size of N = 400 for comparing
the Caffe convolution with the FFT convolutions fft-conv and fft-cgemm-conv. Later
we compare the performance with a variable batch size.

caffe-conv vs. fft-conv In table 4.1 we show times in milliseconds per layer. We can
confirm our theoretical assumptions depicted in figure 2.8 when we compare caffe-conv

and fft-conv. Only convolution layer 2 shows a small speed-up (≈ 1.42×) while
convolution layers 3–5 perform worse. conv1 uses caffe-conv in both cases, hence, the
performance is nearly identical. pass denotes a complete forward pass including other
layers of the network not shown in the table. We visualized the results in figure 4.1.

caffe-conv vs. out-of-place fft-cgemm-conv We compare the traditional Caffe convo-
lution to the out-of-place fft-cgemm-conv. Here our assumptions visualized in figure 2.10
also prove to be accurate. We can observe a heavy improvement in performance for layers
2–5 in table 4.2. Note that conv1’s method is caffe-conv in both cases again and the
times are basically the same. The total speed-up for a forward pass is 2.18× with our
method. We visualize this speed-up in figure 4.2.
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Table 4.1.: GPU Forward times (in ms) of caffe-conv and fft-conv in comparison.

Layer fft-conv (N = 400) caffe-conv (N = 400)
conv1 103.02 100.86
conv2 109.97 155.78
conv3 187.00 103.43
conv4 147.42 114.84
conv5 101.20 93.20
pass 693.74 613.21
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Figure 4.1.: Comparison of execution times of caffe-conv and fft-conv in the reference
Caffe network. (GPU Forward Pass)

Table 4.2.: GPU Forward times (in ms) of caffe-conv and fft-cgemm-conv in
comparison.

Layer out-of-place fft-cgemm-conv (N = 400) caffe-conv (N = 400) speed-up
conv1 99.13 100.86 ≈ 1×
conv2 40.33 155.78 3.86×
conv3 33.33 103.43 3.10×
conv4 33.11 114.84 3.47×
conv5 30.98 93.20 3.01×
pass 281.22 613.21 2.18×
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conv2 conv3 conv4 conv5

Convolution Layer

0

20

40

60

80

100

120

140

160

E
x
e
cu

ti
o
n
 t

im
e
 i
n
 m

s

Comparison of execution times of caffe-conv and out-of-place fft-cgemm-conv. (Forward Pass)

out-of-place fft-cgemm-conv (N=400)

caffe-conv (N=400)

Figure 4.2.: Comparison of execution times of caffe-conv and out-of-place
fft-cgemm-conv in the reference Caffe network. (GPU Forward Pass)

in-place vs. out-of-place fft-cgemm-conv We also compare the performance impact
an in-place FFT has in our implementation. We see in table 4.3 that an out-of-place
forward pass is about 1.05× faster in average than an in-place forward pass. The times per
layer for the out-of-place fft-cgemm-conv and in-place fft-cgemm-conv are in columns
two and three, respectively. Again conv1 durations are basically identical because of the
same method used in both cases. We see the differences in performance in figure 4.3.

Moreover, we check the potential memory savings possible as calculated in section 3.4.3
with the batch size of N = 500 used in the calculation. We first check the memory
allocation needed by caffe-conv followed by an out-of-place fft-cgemm-conv and an in-
place fft-cgemm-conv. caffe-conv uses constant 3737 MB of memory, the out-of-place
fft-cgemm-conv uses 9669 MB–9880 MB of memory while the in-place fft-cgemm-conv
uses 8076 MB–8607 MB of memory. Here we cannot confirm the theoretical predictions.
There are multiple reasons for this behavior. First, we need to allocate temporary
memory so we can transpose the blobs in fft-cgemm-conv (CuBLAS does not support
an in-place transposition of matrices). Secondly, CuFFT allocates itself some more
memory when performing in-place FFTs. Third, we allocate some other variables in
our convolution layer. The greatest memory saving observed between the out-of-place
and in-place method, therefore, is 9880 MB− 8076 MB = 1804 MB, which is almost the
amount estimated in section 3.4.3.

Adjusting the batch size in fft-cgemm-conv The method of performing the fast
Hadamard product clearly benefits from larger matrix dimensions. The sizes of the two
matrices involved in the matrix multiplications are solely influenceable by the batch size
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Table 4.3.: GPU Forward times (in ms) of out-of-place (oop) and in-place (ip) in
comparison.

Layer oop fft-cgemm-conv (N = 400) ip fft-cgemm-conv (N = 400) speed-up
conv1 99.13 101.69 ≈ 1×
conv2 40.33 44.35 1.10×
conv3 33.33 36.07 1.08×
conv4 33.11 37.13 1.12×
conv5 30.98 30.33 0.98×
pass 281.22 294.38 1.05×
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Figure 4.3.: Comparison of execution times of out-of-place fft-cgemm-conv and in-place
fft-cgemm-conv. (GPU Forward Pass)
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N , the number of input channels K and the number of output features Noutput. The only
parameter we can change without changing the networks architecture is the batch size N .
We now compare the performance of caffe-conv to the out-of-place fft-cgemm-conv as
a function of the batch size. In figure 4.4 we have visualized the results of this experiment.
The graph on the top plots the average forward pass time for a single image in the batch
of size N ∈ [1; 400]. We see the average pass time per image on the left y-axis and the
batch size on the x-axis. On the right y-axis we see the speed-up fft-cgemm-conv has
as a function of the batch size. We observe a maximum speed-up of 2.21× with a batch
size of 384 in our experiment. On the bottom of the figure we see basically the same
behavior, but the left y-axis shows the total time for the pass instead of the average time
per image in the batch.
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Figure 4.4.: Comparison of GPU forward times between caffe-conv and out-of-place

fft-cgemm-conv with respect to the batch size.

We also compare the speed-up as a function of the batch size for every convolution layer,
which uses the FFT convolution. Thereto, we show the forward time per image in a batch
as a function of the batch size for convolution layers 2–5 in figure 4.5. The top left graph
shows the timing result for conv2, the top right for conv3, the bottom left for conv4 and
the bottom right for conv5. Generally, the speed-up converges to a fixed factor in every
layer beginning at a batch size of around 100. We noticed that the batch size associated
with the best possible speed-up is different for every layer. The maximum speed-ups we
measured are 3.96×, 3.23×, 3.63× and 3.60× for layers conv2, conv3, conv4 and conv5
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with a batch size of 207, 254, 254 and 389, respectively. The dashed vertical line shows
the batch size with the highest speed-up for each layer.

0 50 100 150 200 250 300 350 400

Batch size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
im

e
 p

e
r 

im
a
g
e
 (

m
s)

Average time per image over batch size (conv2)

Out-of-place fft-cgemm-conv

caffe-conv

speed-up

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sp
e
e
d
-u

p

0 50 100 150 200 250 300 350 400

Batch size

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 p

e
r 

im
a
g
e
 (

m
s)

Average time per image over batch size (conv3)

Out-of-place fft-cgemm-conv

caffe-conv

speed-up

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

sp
e
e
d
-u

p

0 50 100 150 200 250 300 350 400

Batch size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
im

e
 p

e
r 

im
a
g
e
 (

m
s)

Average time per image over batch size (conv4)

Out-of-place fft-cgemm-conv

caffe-conv

speed-up

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sp
e
e
d
-u

p

0 50 100 150 200 250 300 350 400

Batch size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
 p

e
r 

im
a
g
e
 (

m
s)

Average time per image over batch size (conv5)

Out-of-place fft-cgemm-conv

caffe-conv

speed-up

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sp
e
e
d
-u

p

Figure 4.5.: Comparison of GPU forward times of each convolution layer between
caffe-conv and out-of-place fft-cgemm-conv with respect to the batch
size.

4.2.1.2. Backward Pass

Caffe’s time mode only times the weight update step (2.15) and not a complete backward
pass. Therefore, we discuss the training of the whole reference Caffe network from start
to end in section 4.3. In table 4.4 we see a comparison of backward times between an out-
of-place fft-cgemm-conv, an fft-conv and the traditional caffe-conv. Again conv1

performs identical in all three cases. We also see that fft-conv does not perform better
than caffe-conv in any layer, while fft-cgemm-conv performs better in convolution
layers 2–5 with an overall speed-up of 1.48× for a whole backward pass with only the
weight step involved. In figure 4.6 we visualize the execution time per layer for the weight
update step.

4.2.2. CPU Performance

We can observe similar results in the CPU implementation. We only give comparisons of
the total forward and backward pass times here, because all values behave similarly to
those on the GPU reported in section 4.2.1. We also omit measuring the performance for
varying batch sizes.
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Table 4.4.: GPU Backward times (in ms) of out-of-place (oop) fft-cgemm-conv,
fft-conv and caffe-conv in comparison.

Layer oop fft-cgemm-conv (N = 400) fft-conv (N = 400) caffe-conv (N = 400) speed-up
conv1 108.44 112.27 110.92 ≈ 1×
conv2 44.42 134.71 120.88 2.72×
conv3 39.82 209.70 46.34 1.16×
conv4 36.96 157.84 58.00 1.57×
conv5 28.35 107.11 53.99 1.90×
pass 277.50 741.56 409.96 1.48×
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Figure 4.6.: Comparison of execution times of out-of-place fft-cgemm-conv, fft-conv
and caffe-conv. (Weight step in backward pass)
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4.2.2.1. Forward Pass

We used the same batch size of N = 400 for the timings on the CPU. We also ran each
test 200 times like we did for the GPU.

caffe-conv vs. fft-conv We evaluate the simple Hadamard product with fft-conv.
The three loops we parallelized in section 3.4.1 cannot take as much advantage on a CPU
as on a GPU, which uses thousands of simultaneous running threads. Altogether, we
have a slow-down of 3.1× when using fft-conv. A single forward pass with the given
batch sizes takes 21,663.90 ms and 7004.09 ms for fft-conv and caffe-conv respectively.
Also note that we perform the same tasks 11.42× and 31.23× faster on our GPU.

caffe-conv vs. out-of-place fft-cgemm-conv Although the CPU implementation
is several times slower than the GPU version, the measured speed-up of the out-of-
place fft-cgemm-conv is similar to the speed-up we observed on the GPU. We timed
forward pass times of 4000.35 ms and 7004.09 ms for the out-of-place fft-cgemm-conv

and caffe-conv respectively. This is a speed-up of 1.75× in contrast to 2.18× on the
GPU.

in-place vs. out-of-place fft-cgemm-conv We found out that it almost does not
matter if we perform an out-of-place or an in-place version of fft-cgemm-conv on the
CPU. A forward pass for the in-place took 3985.81 ms in contrast to 4000.35 ms, which
is even a little faster but roughly no speed-up at all considering measuring inaccuracies.

4.2.2.2. Backward Pass

The backward pass on the CPU (again we were only able to measure the weight step)
is slightly faster, when we used fft-cgemm-conv. The speed-up we could find out was
a little better than on the GPU. For the out-of-place fft-cgemm-conv we measured a
backward time of 3115.69 ms, while caffe-conv took 5516.80 ms to finish. Thus, the
speed-up on the CPU is 1.77× versus 1.48× on the GPU. We also checked execution
times for fft-conv which performs 8.84× slower than the traditional Caffe convolution.

4.3. Training the Reference Caffe Network

We could only measure timings for the weight step (2.15) in section 4.2.1.2, because
Caffe’s time mode does not measure time for the backpropagation step (2.16). Therefore,
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we trained the reference Caffe network both with our convolution layer using the in-place
fft-cgemm-conv and the traditional caffe-conv. The reference Caffe network needs
about 310,000 iterations to perform best. In each iteration the training step consists
of a forward pass followed by a backward pass, where 256 images of the ILSVRC 2012
training set are forwarded in a batch. We validate the learned weights in a network every
2500 iterations over the ILSVRC 2012 validation set. While training we decrease the
learning rate by a factor of 10 every 100, 000 iterations. A trained reference Caffe network
can reach a validation accuracy of around 57.412% according to the pre-trained model
shipped with Caffe (The model is snapshotted at iteration 310,000 with a validation
accuracy of 56.874% and the best validation accuracy of 57.412% was at iteration
313,000.). We reached a validation accuracy of 56.342% when we trained with the
in-place fft-cgemm-conv method and 57.01% with caffe-conv after exactly 310,000
iterations. We trained the reference Caffe network on the GPU.

We compare the times both trainings needed to reach iteration 310,000. caffe-conv

needed 84.84 h to reach iteration 310,000 while the in-place fft-cgemm-conv needed only
47.52 h to finish the training. Wee see that our method (note we used the slower in-place
version) has a speed-up of about 1.79× when we train the reference Caffe network. This
is slower than in a forward pass, but we need to Fourier transform the weights in every
single iteration, because the weights are adjusted while training. We visualized the
training process with both methods in figure 4.7, where we see validation accuracy over
time on the left side. Here we see how much faster our method reaches a high validation
accuracy in contrast to caffe-conv. We also notice that both methods learn things
the same way, as the accuracy increases considerably on iterations 100,000, 200,000 and
300,000 when the learning rate is decreased. On the right side of the figure we plotted
the training duration respective to the training iteration. The dashed line visualizes
training iteration 310,000 of the in-place fft-cgemm-conv training.
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Figure 4.7.: Comparison of caffe-conv and in-place fft-cgemm-conv training times of
the reference Caffe network.

In figure 4.8 we see the training loss over the iteration number and over the training
time respectively. On top we again can notice that both methods do the same thing
and both method shortly asymptotically converge to the same loss. On the bottom we
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plotted the loss respective to the training time, where we can see one more time that our
method does the same thing considerably faster. We visualize the end of the in-place
fft-cgemm-conv training with a dashed line again.
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Figure 4.8.: Comparison of caffe-conv and in-place fft-cgemm-conv GPU training
loss in respect to the iteration number and training time while training the
reference Caffe network.

4.4. Designing FFT-Exploiting Layers

We now design a layer exploiting properties of the FFT. The FFT sizes we calculate in
our layer (3.2) sometimes leave room to increase the kernel size without increasing the
FFT size. Therefore, greater kernel sizes do not need any additional computation time
in the frequency domain. We used the GPU implementation to compare results of the
custom designed layers.

First, we altered the first convolution layer of the reference Caffe network to demonstrate
huge speed-ups by exploiting FFT properties. We changed the stride parameter from
s = 4 to s = 1 and altered the kernel size in our experiments to range from 11 to 29 with
a step size of 2. So, we used the kernel sizes Kh = Kw ∈ [11; 13; 15; 17; 19; 21; 23; 25; 29].
For the kernel sizes 11 and 13 the FFT size is 240, while it is 256 for the other kernel
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sizes. We know that the computational complexity of the convolution in the time domain
increases quadratically with the kernel size, while it does not in the frequency domain
as long as the FFT size stays constant. We confirm this in table 4.5 where we tested
our custom layer with a batch size of N = 50 (We could not fit a greater batch size into
GPU memory).

Table 4.5.: GPU Forward times (in ms) of out-of-place (oop) fft-cgemm-conv and
fft-conv with varying kernel size within the first custom convolution layer
in comparison.

kernel size oop fft-cgemm-conv (N = 50) caffe-conv (N = 50) speed-up
11 71.69 128.69 1.80×
13 71.84 182.77 2.54×
15 76.58 235.64 3.08×
17 78.51 294.44 3.75×
19 77.35 357.61 4.62×
21 77.87 427.94 5.50×
23 74.48 490.61 6.59×
25 77.22 583.59 7.56×
27 76.56 667.28 8.72×
29 76.40 755.99 9.90×

This table shows almost the same execution time for kernel sizes of 11, 13 and 15, 17, 19, 21,
23, 25, 27, 29 respectively for the out-of-place fft-cgemm-conv. In contrast caffe-conv
takes longer for greater kernel sizes. For a kernel size of 29 we achieve a speed-up of almost
10×. Note that we also have a speed-up for a kernel size of 11 in contrast to the our
theoretical predictions here. We did not use the FFT convolution in the first convolution
layer of the reference Caffe network before, because it did not pay off. We solely have
a speed-up here, because we set s = 1. The Caffe convolution in the time-domain
computes the convolution at every s = 4-th position in both dimensions. In the frequency
domain this is not possible since we loose all spatial information after computing the
frequency domain representation. Therefore, the first convolution layer of the reference
Caffe network does not promise any speed-ups in contrast to our custom designed layer.
We visualize the speed-ups as a function of the kernel size in figure 4.9. The forward
time is on the left y-axis, which has a logarithmic scale. We plot the speed-up on the
right y-axis. On the x-axis we see the kernel size.

We constructed a second custom convolution layer which has an input of size 55× 55× 96
on which we tested the kernel sizes Kh = Kw ∈ {2n+ 1 : 0 ≤ n ≤ 19}. We set both the
stride and padding to 0 in this layer, while we now use a batch size of N = 200. The FFT
sizes are 64, 80 and 96 for the kernel sizes {2n+ 1 : 0 ≤ n ≤ 4}, {2n+ 1 : 5 ≤ n ≤ 12}
and {2n+ 1 : 13 ≤ n ≤ 19} respectively. Note the number of positions we can convolve
varies, because we do not adapt the padding parameter accordingly. Thus, we do not get
a linear speed up with increasing kernel size. We visualize the results of our experiment
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Figure 4.9.: Comparison of caffe-conv and in-place fft-cgemm-conv forward times
when adjusting the kernel size in the first custom layer.

in table 4.6 and figure 4.10 with the same format as the previous table and previous
figure. Here we see that we can achieve huge speed-ups of approximately 20× with a
kernel size of 31 in this layer, while the FFT convolution is not as beneficial for small
kernel sizes.

We can use this property in designing new network architectures that take advantage
of bigger kernels. We have yet to find out if greater kernel sizes increase the validation
accuracy or improve other factors of a DCNN.

4.5. Testing for Correctness

The most important fact is if our ConvolutionLayerFFT actually calculates a correct
result and returns the same result as a ConvolutionLayer every time. We ensure the
correctness by implementing unit tests of our own and also compare the validation accuracy
of the FFT convolution with the Caffe convolution. We do both assurances for every
different method (fft-conv, out-of-place fft-cgemm-conv and in-place fft-cgemm-conv)
we implemented on the GPU as well as on the CPU.
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Table 4.6.: GPU Forward times (in ms) of out-of-place (oop) fft-cgemm-conv and
fft-conv with varying kernel size within the second custom convolution
layer in comparison.

kernel size oop fft-cgemm-conv (N = 200) caffe-conv (N = 200) speed-up
1 85.51 15.35 0.18×
3 85.36 78.65 0.92×
5 88.52 177.05 2.00×
7 88.43 375.30 4.24×
9 88.00 448.47 5.10×

11 132.12 821.54 6.22×
13 132.00 897.35 6.80×
15 131.76 1135.73 8.62×
17 130.47 1845.20 14.14×
19 130.00 1592.67 12.25×
21 129.75 1864.20 14.37×
23 129.30 2187.03 16.91×
25 128.45 2471.96 19.25×
27 184.31 2566.16 13.92×
29 183.57 2930.70 15.96×
31 183.07 3644.34 19.91×
33 185.58 3054.51 16.46×
35 184.75 3406.56 18.44×
37 184.70 3313.29 17.94×
39 185.01 3025.50 16.35×
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Figure 4.10.: Comparison of caffe-conv and in-place fft-cgemm-conv GPU forward
times when adjusting the kernel size in the second custom layer.
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4.5.1. Unit tests

The developers of Caffe assured the correctness of their layers by implementing unit tests
for every layer. In the special case of the convolution layer they implemented a reference
convolution method that performs convolutions with random values. The unit tests
examine many different combinations between convolution parameters (kernel size, stride,
padding, group...) for the forward pass. For the backpropagation, unit tests ensure the
implementation correctness by numerically calculating a gradient [14] and comparing it
with the backward step’s result. The mathematical definition for a derivation can be
expressed like this:

∂ f(x, y)

∂ x
= lim

h→0

f(x+ h, y)− f(x, y)

h

Note that h is very small here. In the unit tests we modify weights by a small amount h,
perform a forward pass with those weights and compare the difference with the backward
pass’ result.

We duplicated those unit tests and expanded them to test many different ways our
own ConvolutionLayerFFT can compute the convolution. This unit tests compare the
layer’s output and compare it with the reference values for CPU and GPU and both
single-precision and double-precision values. All tests passed on our layer.

4.5.2. Forward Pass on Validation Set

We also used the ILSVRC 2012 validation set and compared the validation accuracy with
the validation accuracy reported by caffe-conv. We tested on all 50,000 images and
found both methods to yield the exact same result of 56.874% on the reference Caffe
network.

Afterward, we used our newly FFT-trained reference Caffe network and tested the
validation set on the trained network both with caffe-conv layers and layers using
fft-cgemm-conv. Both methods reported the same validation accuracy of 56.342% we
reported earlier.





5. Conclusion and Future Work

5.1. Summary

In this master thesis, we used the well-known method of pointwise multiplying in the
frequency domain to implement a faster method of performing a convolution within
the Caffe framework. Because most recent and also larger DCNNs need more time to
calculate results even on contemporary hardware, we developed a convolution layer that
tries to mitigate these limitations.

We began this thesis by introducing the convolution operation and explaining how the
convolution is performed in a Caffe convolution layer in chapter 2. We then described
a typical DCNN which we used as an example to explain the theoretical groundwork.
Afterward, we gave an introduction into Fourier transforms and described how the
convolution in the frequency domain is done by using the convolution theorem through
pointwise multiplication. Thereupon we suggested an even faster way of evaluating
the pointwise product in the frequency domain. Furthermore, we estimated whether
a convolution in the frequency domain pays off on a typical DCNN by calculating the
number of arithmetic operations for both the Caffe convolution and the frequency domain
convolution. Because these results were promising, we examined whether the training
operation of a DCNN can also be expressed through convolution operations to speed up
the – very time-consuming – backpropagation.

In chapter 3 we described important details we used in the implementation of our own
FFT convolution layer. We started by describing how the Caffe framework is constructed
and handles its input data. We then described how the convolution is performed in Caffe
and which pitfalls we have to avoid to develop our own convolution layer. Afterward,
we started implementing our own frequency domain convolution layer. We enumerated
the libraries for the FFT and matrix multiplications we used both for the GPU and
CPU implementation. After that, we made sure to preserve the compatibility with the
Caffe convolution layer and other layers by transforming results back in the time domain.
Thereupon, we prepared the data in the layer for taking the FFT most efficiently followed
by computing the pointwise product in the frequency domain. After that, we gave details
on how to transform the frequency representation back to the time domain and normalize
the result. We then described how the full forward and backward pass are implemented.
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Finally, we gave details on how to optimize the process even more and outlined some
special implementation details of a GPU implementation.

At the end of our thesis, we evaluated our frequency convolution layer in chapter 4
by using various test scenarios on the GPU as well as on the CPU. We confirmed the
theoretical assumptions made before on the typical DCNN. On this network, we achieved
speed-ups of more than 2× without altering the network’s architecture in our favor. We
found out that the speed-up is higher with an increasing batch size. After that, we
tested training the typical network as a whole, both with our method and Caffe’s method.
We found out that our method finished training in almost 1.8× less time than Caffe’s
convolution layer. We then constructed two layers exploiting properties of the FFT in our
favor which yielded speed-ups of 10× and 20× respectively. Finally, we made sure our
convolution layer also works correctly and returns the same results as Caffe’s convolution
layer by duplicating Caffe’s unit tests for our layer.

Alongside with this thesis, we supply an implementation. Our implementation extends the
capabilities of the Caffe framework in the form of an additional ConvolutionLayerFFT
that uses the FFT to compute the convolution. We also provide the implementation on
Github1.

5.2. Future work

We will focus on reducing the memory footprint in future work. We found that allocating
additional memory required for Fourier transforms needs to be done only once. We
allocate additional memory only for the convolution layer that consumes most memory.
According to the reference Caffe network and table 3.4 we only allocate memory for
conv2 and reuse this allocated memory area in conv3, conv4 and conv5. By doing so, we
can save further 1368 MB of memory, which is equal to 64 % of the memory we allocated
for an in-place FFT. Additionally, we can save even more memory by just retaking the
Fourier transform of the weights every forward pass, however, sacrificing computation
performance in return. Using this method, we hope to fit larger DCNNs in the restricted
memory of contemporary GPUs.

We also want to explore other network architectures taking advantage of FFT properties
such as weights with bigger kernel sizes. We hope to find some interesting properties
DCNNs with bigger kernel sizes have.

1Our implementation is available on https://github.com/philm5/caffe.

https://github.com/philm5/caffe
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A. Derivation of the Convolution
Theorem

This appendix gives the derivation of the convolution theorem. The derivation we give
is based on [21]. The convolution theorem states that a multiplication in frequency
domain is equal to the convolution in the time domain. So we take the product of Fourier
transforms of f(x) and g(t):

f̂(m)ĝ(m) =

∫ ∞
−∞

f(x)e−i2πxm dx

∫ ∞
−∞

g(t)e−i2πtm dt

Note that we use two different variables for integration so we can combine the product
into a iterated integral:∫ ∞

−∞
f(x)e−i2πxm dx

∫ ∞
−∞

g(t)e−i2πtm dt =

∫ ∞
−∞

∫ ∞
−∞

e−i2πxme−i2πtmf(x)g(t) dx dt

=

∫ ∞
−∞

∫ ∞
−∞

e−i2π(x+t)mf(x)g(t) dt dx

=

∫ ∞
−∞

[ ∫ ∞
−∞

e−i2π(x+t)mg(t) dt
]
f(x) dx

We substitute x+ t by u and therefore get t = u− x and dt = du. Afterward, we switch
the order of integration:∫ ∞

−∞

[ ∫ ∞
−∞

e−i2π(x+t)mg(t) dt
]
f(x) dx =

∫ ∞
−∞

[ ∫ ∞
−∞

e−i2πumg(u− x) du
]
f(x) dx

=

∫ ∞
−∞

∫ ∞
−∞

e−i2πumg(u− x)f(x) du dx

=

∫ ∞
−∞

∫ ∞
−∞

e−i2πumg(u− x)f(x) dx du

=

∫ ∞
−∞

e−i2πum
[ ∫ ∞
−∞

g(u− x)f(x) dx︸ ︷︷ ︸
h(u)

]
du
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We see that h(u) =
∫∞
−∞ g(u− x)f(x) dx =

∫∞
−∞ f(x)g(u− x) dx is nothing other than

the continuous convolution as defined in [2]. We can also see that the Fourier transform
of h(u) is taken:∫ ∞

−∞
e−i2πum

[ ∫ ∞
−∞

g(u− x)f(x) dx
]
du =

∫ ∞
−∞

e−i2πumh(u) du

=

∫ ∞
−∞

h(u)e−i2πum du

= ĥ(m)

Therefore, we can conclude that the multiplication in the frequency domain is the same
as taking the Fourier transform of the convolution in time domain:

⇒ ĥ(m) = F(f(x) ∗ g(x))[m] = F(f(x))[m] · F(g(x))[m] = f̂(m) · ĝ(m).
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