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Abstract

In recent years SIFT features have become one of the standard tools in many

applications in computer vision. Many variants and improvements are developed

with much effort to get SIFT features with more robustness and distinctiveness,

while scaling down complexity. For object recognition, one reason for this devel-

opments is that there are still many features that are detected in uninteresting

image regions such as the background, that do not help recognize the object on

the image. As a result removing these noisy features would reduce the number of

mismatches, the allocated memory space for keypoints, and the overall number

of detected keypoints, which could result in a faster and more robust matching.

In this thesis we examine a feature refinement technique that is based scaling

and rotating images prior to the features extraction. The main idea is that stable

features of an image are not affected by affine transformations of the image. As

a consequence simulating these transformations and reducing the number of key-

points to the number of those keypoints that survive these simulations, results in

a set of only stable keypoints for the image. To obtain the more stable keypoints,

we first generate two new images from an image by transforming it in two ways

and with different parameters. Then an feature extraction of these three images

and a mapping of the features back to the approximate location in the original

image give us two feature maps and a set of keypoints of the original image. With

these feature maps we then determine which feature is stable enough to withstand

these affine transformations, and which is not. The refined keypoints are then

tested with two matching strategies. The first one is the nearest neighbor ratio

approach, the second one the BoW approach. Both are tested in experiments

within a Near-duplicate Image Retrieval, in which we evaluate the effectiveness

of our approach with different scale and rotation parameters. Compared to the

classical SIFT respectively SURF features, the first shows a significant rise in sta-

bility as well as faster matching due to a notable reduction of keypoints, whereas

the second one shows that only a little loss in precision has to be taken, for a

reduction of memory storage for feature points.
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1 Introduction

Finding correspondences between objects of two different images has been an im-

portant issue in computer vision applications, such as pose estimation, image reg-

istration or object recognition. Especially the latter has become more and more

important for the fast development of Internet applications, such as multimedia

sharing websites. Users of websites such as Facebook, Flickr, or Youtube add im-

ages and videos very rapidly, pushing the amount of images and videos available

in the Internet to an enormous size. As a consequence we require an efficient mul-

timedia information retrieval method, with attributes like saving memory space,

faster matching, or reliable features.

For recognizing images with a specific object in a database, feature-based

methods have become more and more common. On this task the Scale Invariant

Feature Transform (SIFT) proposed by Lowe [1] has been successfully applied

as SIFT features are invariant to scaling, rotation, translation and at least par-

tially to illumination changes, affine and 3D projections. In this thesis we want

to especially make use of the scaling and rotation invariants of SIFT. We pro-

pose a variant of SIFT that has less, but more reliable features, that we get by

transforming the image.

Many variants and extensions claim to improve the performance of SIFT fea-

tures. Some of them try to improve the matching strategy with a visual vocab-

ulary tree [2] or partitioning the keypoints set into sub-sets for each octave [3].

VF-SIFT [4] extends the SIFT features by several pairwise independent angles

to cluster them after the extraction in dependency of their introduced additional

angles.

Others try to improve SIFT by making a feature more informative, either by

adding some information or subtract features that are in some kind of definition

less informative. To mention a few, there is for example the approach of Dense

Interest Points [5] which is an hybrid scheme that combines interest points such as

SIFT with dense sampling. It takes the advantages of both, the high repeatability

of interest points and the good object coverage of the dense sampling grid, to
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1 Introduction

lower the disadvantage of each of them. Thus although some patches of the

dense sampling grid do not contain accurately matching keypoints, they are still

kept, because they could give some more information to interpret the whole scene

of an image. Another approach, ASIFT [6] tries to extend the affine invariance

of SIFT with two affine invariants for the angles that define the camera axis

orientation. This is done by simulating these two angles, leading to a fully affine

invariant SIFT. BSIFT [7] adds an additional background invariance through an

anisotropic smoothing instead of the Gaussian smoothing at the feature detection

step. Thus we get an object-boundary-respecting Gaussian scale-space pyramid

at the detection step, helping us to detect the object with different backgrounds.

On the other hand, Turcot and Lowe [8] propose a way to improve SIFT

for object recognition not by adding some attributes to the existing keypoints

but by reducing the number of keypoints by selecting a set of useful features

that have more information than the remaining ones. Briefly explained, a useful

feature is in this context a feature, which is robust enough for a corresponding

feature in the same object to match with it, stable enough that it can exist in

multiple viewpoints and distinctive enough that, in a matching with the Bag-of-

word approach from Nistér and Stewénius [2], the corresponding features refer to

the same visual word. Not useful features are then removed. The result is a small

set of keypoints, which results then in a reduction of memory requirements, which

is more suitable for large image database problems. In a few words, the main

idea of finding useful features is that contrary to useless ones that occur in only

one single image, useful features can exist on more than one image of the same

object or location and are geometrically consistent to one another. Thus these

useful features can be found by seeking for those keypoints that are on images

with the same object shown in a different view and determining geometrically

consistent ones through BoW [2] and RANSAC [9].

In this work we investigate an approach proposed by Zhang et al. [10]. They

proposed a way to refine SIFT keypoints to a subset of, in their context, more

stable ones by scaling the image. They notice that many local features of an

image are not stable and informative enough, as they are for example detected in

the, for object recognition, uninteresting background. Moreover scaling an image

obviously varies the number of keypoints of that image. The idea is then that

some unstable features cannot withstand these transformations. Thus they scale

an image in the horizontal and vertical direction, generating new images, which

are then used to determine a set of stable features that withstand affine transfor-

mations, and then finding contextual visual words containing these features.
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1 Introduction

As our focus is on the results of the refinement itself, our approach differs

from Zhangs approach as we only refine the features, but do not use contextual

visual words like Zhang et al. do it in [10]. Instead we do a matching with

a method proposed by Lowe, that we refer to by the nearest neighbor ratio [1]

throughout the rest of this work and a BoW method likely to that of Nistér and

Stewénius [2]. In addition we do not only scale the image but also rotate it, as

SIFT features are also invariant to rotation, and furthermore test the technique

with SURF(speeded-up robust features) [11], as SURF features have the same

scale and rotation invariance as SIFT. They differ from SIFT mainly, because

they use integral images and a Hessian blob detector instead of SIFTs difference-

of-Gaussian(DoG) detector.

The thesis presents our method for extracting these refined features and which

improvements it can have for which matching strategy. Section 2 gives a brief

definition of stability and the refinement technique. The affine transformations

and the refinement with the transformed image are introduced. Section 3 provides

our experiments and their evaluations. In that section we present our dataset for

the experiments, the results for the amount of remaining features, how the scale

of a features is correlated with its likelihood to be removed in the refinement, and

our approach in a near duplicate retrieval first with the nearest-neighbor ratio

matching strategy and then with a BoW method.
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2 Local Feature Refinement

In this section we describe how we refine features with affine transformations.

First we briefly define what stability of a keypoint means in our context, giving

a general idea of our approach. After that we discuss the refining technique, and

the two affine transformations, scaling and rotation, that delete a certain number

of less stable keypoints. To be sure what one simple kind of affine transformation

can change, we do not mix these affine transformations, and only use simple

ones such as scaling along one axis. The reduction of the number of keypoints

results in a speed up of the execution time for a matching with any matching

technique, whose execution time depends on the number of features per image,

such as Lowes simple nearest-neighbor ratio matching strategy [1]. For these and

other matching techniques the more stable keypoints result in less mismatches.

With less features also comes a saving in memory space, which can be important

for applications with a large image database and a limit in memory space.

2.1 Stability of Keypoints

Before we can discuss our technique of feature refinement and its improvements,

we have to define what ”stable keypoints” means in this thesis. According to

Lowe [1] SIFT features are invariant to scaling and rotation, thus the local fea-

tures should not be affected by these affine transformations. Therefore a stable

keypoint, is a keypoint that withstands these transformations and hence should

be found on every image showing a similar or almost similar object in different

scale and rotation. Other keypoints on these images are seen as noise. Thus

removing them results in a set of only stable keypoints. The same characteristics

apply to SURF [11] features as well, as SURF features have the same invariants

as SIFT.
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2 Local Feature Refinement

2.2 Refinement Techniques

We refine local features of an image as proposed by Zhang et al. [10]: First we

create new images from the original image by performing affine transformations.

Then we extract SIFT-features from these images and the original image and

compute a feature map for each affine transformed image. These maps show the

position of the features extracted from the transformed image, on the original

image. With this feature maps we get the refined features, because less stable

keypoints can then be deleted by comparing features of the original image with

those of the feature maps. Details are discussed in the next pages.

Suppose we have an image whose coordinate system has its origins in the

upper left corner. Its x-axis is going from left to right and the y-axis is going

from the top to the bottom. Then the coordinate of a pixel is (x, y). To transform

the image we need a transformation matrix T . For scaling the matrix is given by(
a1 0 0

0 a2 0

)
,

where a1 is the parameter for scaling along the horizontal axis, and a2 the pa-

rameter for a scaling along the vertical axis.

And for the rotation with angle α and the rotation center in the middle of the

image, i.e., (xcenter, ycenter) =
(
b imageheigth

2
c, b imagewidth

2
c
)
T is:

(
cosα sinα (1− cosα) · xcenter − sinα · ycenter

− sinα cosα (1− cosα) · ycenter + sinα · xcenter

)

Theoretically the new coordinate (xnew, ynew) of a pixel at (x, y) can then be

computed by multiplying, i.e.,

(
xnew

ynew

)
= T ·

xy
1

 ,

but this does not work in practice, as for an image there is need of interpolation.

In this thesis for scaling the interpolation is done with the bicubic interpolation

over a 4×4 pixel neighborhood, because except for one parameter all other param-

eters in our experiments scale down the images and for this affine transformation

the bicubic interpolation has been a proper method in many experiments. For
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2 Local Feature Refinement

rotation we use the bilinear interpolation as experiments show that this is an

appropriate interpolation method for our refinement technique.

In this thesis we only scale and rotate the image in one direction at a time,

and after that we generate another transformed version of the original image with

a scaling or rotation in the other direction. That means we first scale along the

vertical axis and then along the horizontal one, or rotate counterclockwise and

then clockwise. The reason is that with more than one transformation in one

direction at a time, experiments show that the approximation made by interpola-

tion changes the information we get from the image too much for our experiments.

An extreme case of loss of image information through an interpolation is shown

in Figure 2.1. As noted in the introduction of this chapter, our main goal is to

find out what one simple affine transformation can do. Thus we only test these

two transformations per image. Another reason is that otherwise we have to face

a loss in our speed up with affine transformations slowing down our program, as

well as our main goal is to find out how even these simple transformations can

change the performance of SIFT and SURF respectively. Furthermore we do not

mix the affine transformations.

Figure 2.1: An example of information loss caused by 8 counterclockwise 45° rotations(right)
of an image(left).

After generating two new images with the method above, we extract SIFT

and SURF features of these two images and the original image, as illustrated in

Figure 2.2. Then we compute the corresponding coordinates in the original image

of each of the detected features in the new images. This is done with the inverse

matrix of T , i.e., (
x

y

)
= T−1 ·

xnew

ynew

1


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2 Local Feature Refinement

For each transformed new image, we now have mapped all its features back to

the original image, generating a feature map as can be seen in Figure 2.2. These

feature maps, show all keypoints of the transformed image at the coordinate

where they could be in the original image. Thus a features map, links every

feature of the transformed image with the place where it could be before the

affine transformation. Features on which the transformation has no effect are

found on the feature map in a small neighborhood of the similar feature in the

original image. Hence noisy keypoints of the original image have no partner in a

feature map, and are removed. We therefore need these feature maps to find the

more stable keypoints, with stability in a way as defined in section 2.1.

To do so, we have to find a measure for the similarity of a descriptor A in the

original image and a descriptor B in one of its feature maps. That way we can

be sure which descriptor B that we find in the neighborhood of A, is really the

same feature as the feature A, but only slightly shifted on the image. According

to Zhang et al. [10] this similarity can be computed with:

sim(A,B) =
A ·B

‖A‖ × ‖B‖
,

where ‖·‖ is the L2−Norm of A and B respectively. The denominator is a always

nonnegative product of two distances, and A and B are two 128-dimensional SIFT

descriptors or two 64-dimensional SURF descriptors. This sim value computes

the cosine of the angle between the descriptor A and B. Hence the higher the

sim value is, the smaller the angle between A and B gets and the more similar

they are. As the SURF descriptors also have negative values, we use the absolute

value of A ·B as nominator to compute a nonnegative sim(A,B). The reason is

that a negative sim(A,B) stands for an angle between A and B that is bigger

than 90°. But from the two angles between two descriptors, we only want to know

the size of the smaller angle, which is computed by using the absolute value of

the cosine, respectively sim. Therefore we denote the similarity measure in this

thesis as:

sim(A,B) =
|A ·B|
‖A‖ × ‖B‖

We now need the most similar local feature B within a small neighbor region

by computing sim(A,B) for each pair of keypoints A and B and determining the

sim with the maximal value. As the size of this neighbor region is not defined by

Zhang et al. [10] we empirically choose a size of 3×3 pixels. To remove less stable

keypoints we only keep those that have a similarity larger than a threshold of 0.8.
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2 Local Feature Refinement

Here we use the same threshold as in [10]. Finally we receive a set of refined

features, as can be seen on the right side of the example depicted in Figure 2.2.

Throughout the rest of this work, we call our approach SIFTplus or SURFplus,

as this makes further discussions easier to understand.

é é

vertical scaling extracted features feature map 1

é é

horizontal scaling extracted features feature map 2

é

original image extracted features refined local features

Figure 2.2: An example of local feature refinement by scaling with 0.8
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3 Experiments and Evaluations

In this section we conduct some experiments to evaluate the refinement technique.

This section gives us a summary about the dataset, the extraction of feature

points, the dependency between feature scales and scaling, and the matching

methods we used, the near duplicate image retrieval in which this approach could

be used and our experiments within it. The results show not only, if SIFTplus or

SURFplus has the improvements we expected, but also what parameters for the

affine transformations give which improvements with respect to precision, recall,

and execution time for feature extraction, refinement and matching. Furthermore

we discuss the difference of the results of refinement of SIFT features on the one

hand and SURF features on the other hand.

3.1 Dataset

As a dataset for the following experiments with near duplicates we choose the

ukbench dataset generated by D. Nistér and H. Stewénius [2]. The 10200 images

of the size 640× 480 pixels are appropriate for our experiments for the following

reasons: Firstly these images show enough different items in different ambient

conditions, for example items of daily life, in different locations like inside a

families home or a super market, as well as in different lighting conditions and

as a single object or as a group of smaller objects like a bookshelf. Secondly an

image of ukbench has three near duplicates, thus a class consists of four images.

Images of one class show the same object, but with different capturing conditions

as for example with a different capturing angle or distance, or under different

lighting conditions. Some examples are given in Figure 3.1.
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3 Experiments and Evaluations

Figure 3.1: A ukbench class with its duplicates(top) and some example of other classes(bottom)

3.2 Affine Transformations

As mentioned in the last chapter we need affine transformations for the refine-

ment of features that lead to less but more stable keypoints, by computing SIFT

and SIFTplus as well as SURF and SURFplus features with different scale and

rotation parameters. Here we want to find out how many keypoints we can re-

move with this refinement, as less keypoints also result in less memory space,

and sometimes also less execution time for matching. Zhang et al. [10] have a

scaling parameter of 0.8 in vertical and horizontal direction and SIFT features

are invariant to a rotation as big as 30° [1], therefore we want to test parameters

that are in the range of these values. Hence for scaling we choose the parame-

ters 0.70, 0.75, 0.80, 0.85, 0.90, 0.98, 1.2 to see if the parameter mentioned in

Zhangs work is the best one. For rotation the parameters are 20°, 25°, 30°, 35°
and 40°, as we want to see if a invariant boundary has any effects on our kind

of refining. To get an overview of how many features remain after these affine

transformations we extract SIFT and SIFTplus features, respectively SURF and

SURFplus features, of 500 images, each from different image classes of ukbench

and compute the average percentage of remaining features.

The following details should be considered while interpreting the results of our

experiments. For SIFTs features extraction octave 0 or octave -1 can be chosen as

a first octave for the scale space pyramid, where octave -1 means that right before

the pyramid is build, the image is doubled using linear interpolation. This can be

done if more keypoints are needed than a start from octave 0 can provide. As our

images are big enough and also because we want to avoid interpolation through

enlarging the images before doing some explicit affine transformations, we start

the SIFT features extraction from octave 0. For SURF a Hessian threshold gives

the minimum for the Hessian value of all detected features. Features with a

Hessian smaller than the threshold are not extracted. As our dataset consists of
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3 Experiments and Evaluations

sharp images with a high contrast, we empirically chose a threshold of 500.

A third point is, that for scaling the steps discussed in 2.2 can be followed with

no further considerations, but for rotation we may have to consider some extra

property compared to the original image. For example in our experiment, rotation

causes an additional black background. This background must be considered as

it makes the image bigger, thus feature extraction needs more time, as well as

computing the feature map has to be done in respect of the black space of the

generated image. Furthermore it leads to additional noisy features as there is

an additional edge between the rotated image and the black space. An example

of this problem is illustrated in Figure 3.2. Our experiments show that through

refinement with rotation features at the edge of the image are removed, leading

to a small border with no keypoints. This phenomenon is depicted in Figure 3.3.

Figure 3.2: An example of local features on a image rotated with 30°

é

Figure 3.3: SIFTplus with a rotation 30° results in a border without keypoints (image on the
right)

The results of our tests for SIFT are illustrated in Table 3.1 and Table 3.2.

13



3 Experiments and Evaluations

Table 3.3 and Table 3.4 show the results of this experiment for SURF. Each

row stands for a scaling or rotation in both directions, horizontal and vertical

resp. clockwise and counterclockwise. Scaling leads to a great loss of keypoints,

whereas rotation only removes about 1
3

of all features. Moreover there is no real

difference in the number of keypoints of different rotation parameters. Hence we

do not expect a great difference between the experiments with different rotation

parameters, but do expect this in the case of scaling.

Another important point regarding affine transformations is also the execu-

tion time needed to transform the image and compute feature maps. Then we

can see, for a certain application, if our approachs change of precision or recall

(see section 3.4) and this additional time for affine transformations is acceptable

compared to a possible speed up by matching with less features. As the execution

time depends on implementation and the computer, we only explain briefly what

is expected regarding our experiment with 896 images. The average execution

time for extracting SIFTplus features with affine transformation is several times

higher than the one for SIFT features. This is caused by the additional time for

the transforming, but especially for the additional two times of features extrac-

tion from the transformed images. These results are illustrated in Figure 3.13 to

Figure 3.16 in section 3.4.1.

SIFT SIFTplus, scaling with:
0.70 0.75 0.80 0.85 0.90 0.98 1.2

AVG number of kp 939 191 270 354 446 548 716 559
AVG percentage of kp 100� 19� 28� 36� 46� 57� 75� 58�

Table 3.1: Comparing the average number and percentage of remaining keypoints (kp) of SIFT
to SIFTplus with different scaling parameters

SIFT SIFTplus, rotation with:
20° 25° 30° 35° 40°

AVG number of kp 939 638 637 639 638 636
AVG percentage of kp 100� 66� 66� 66� 66� 66�

Table 3.2: Comparing the average number and percentage of remaining keypoints (kp) of SIFT
to SIFTplus with different rotation parameters in degree

SURF SURFplus, scaling with:
0.70 0.75 0.80 0.85 0.90 0.98 1.2

AVG number of kp 569 158 204 251 303 363 461 357
AVG percentage of kp 100� 28� 36� 44� 53� 64� 82� 61�

Table 3.3: Comparing the average number and percentage of remaining keypoints (kp) of SURF
to SURFplus with different scaling parameters

14



3 Experiments and Evaluations

SURF SURFplus, rotation with:
20° 25° 30° 35° 40°

AVG number of kp 569 273 262 258 260 271
AVG percentage of kp 100� 46� 44� 44� 44� 46�

Table 3.4: Comparing the average number and percentage of remaining keypoints (kp) of SURF
to SURFplus with different rotation parameters degree

3.3 Feature Scales and Refinement by Scaling

One kind of our refinement is a refinement by scaling the image. For each feature

a scale value can be assigned to it, describing the scale of an image in an octave

where the feature was found. Hence it is possible that there is a dependency be-

tween the scale value of a feature and its likelihood to be removed by a refinement

with scaling. Our experiments in this section can therefore be useful to define for

which scale features are more likely to be rejected and hence are more likely less

stable.

Our experiments for this issue is done with a set of 100 image, where all of

them are first images of 100 image classes. As scaling parameter we chose 0.9,

because a greater scaling leads to too less features to compare feature scales.

We then extract SIFT and SIFTplus as well as SURF and SURFplus features

from these 100 images. For the SIFT and SIFTplus features we then generate

histograms with 600 bins, each of them representing a scale interval of the size

0.1, hence the maximum scale is 60. For SURF and SURFplus we generate

histograms with 800 bins, where each of them represents a scale interval of one,

thus the maximum scale here is 800. First we do an experiment to see how many

keypoints exist for each bin of scale, to get an overview of keypoints and scales.

Then another experiments shows us in percent how many features per scale from

the original ones are removed.

The results for the first experiment for SIFT are illustrated in Figure 3.4

Keypoints come mainly from smaller scales between 1.5 and 10, thus also the

removed keypoints are mainly from smaller scales when respecting the sum of

all removed keypoints. Figure 3.5 shows the results of the second experiment.

Almost all SIFT features from the smallest scales are removed, as well as a great

part of some bigger scales from 15 upward, whereas for scales between 2 and 15

only about 30� to 40� of the original keypoints at that scales are removed. To

sum it up, SIFT keypoints from really small scales as well as partly also bigger

scales tend to get removed more likely, and hence, with respect of our definition
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3 Experiments and Evaluations

for stability (see section 2.1), tend to be less stable than the keypoints from other

scales.

Figure 3.4: The number of keypoints per scale interval of size 0.1 up to an amount of max ≈
8000. Yellow illustrates the number of original SIFT features per scale bin, red the number
of features that were removed during the refinement. For a clearer illustration the unit of the
horizontal axis is 1.0.

Figure 3.5: The percentage of removed SIFTkeypoints per scale interval of size 0.1. For a
clearer illustration the unit of the horizontal axis is 1.0.
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3 Experiments and Evaluations

The histograms of the same two experiments with SURF are depicted in

Figure 3.6 and 3.7. The results are quite similar to those of the experiments with

SIFT. Again the keypoints come mainly from smaller scales between 10 and 90,

as well as therefore most of the removed keypoints come from small scales. But

slightly different from SIFT, SURF features of bigger scales from 100 upward are

even most likely to be deleted than those from these scales. And also here the

features from the smallest scales, i.e. scales less than 20, tend to be more likely to

be removed. Hence in summary we have the same result as for SIFT: keypoints

from really small scales and those from bigger scales tend be more likely to get

removed, which means they are in our definition less stable.

Figure 3.6: The number of keypoints per scale interval of size 0.1 up to an amount of max ≈
4700. Yellow illustrates the number of original SURF features per scale bin, red the number
of features that were removed during the refinement. For a clearer illustration the unit of the
horizontal axis is 10.

Figure 3.7: The percentage of removed SURF keypoints per scale interval of size 0.1. For a
clearer illustration the unit of the horizontal axis is 10.
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3 Experiments and Evaluations

3.4 Near-duplicate Image Retrieval

Near-duplicate Image Retrieval has been successfully used in copyright issues or

large-scale web image retrievals [2, 12], to efficiently find duplicates to reduce

redundant contents on the web to save memory space, or detect image spam [13].

Hence there is a huge demand on improving any part of Near-duplicate Image

Retrieval. Also matching in a Near-Duplicate dataset gives no uncertainty for

our evaluation, which image is a match to a sample image, i.e. an image that is

a near- or partial-near image as the sample image, and which one is not. Thus

the Near-duplicate Retrieval lets us evaluate our matching experiments without

any doubt of an image being a true match or not. For these reasons we chose the

Near-duplicate Image Retrieval to test our approach.

As a matching technique for our experiments we wanted to use both, a simple

one with as less approximation as possible, as well as a faster one with approxi-

mation. Thus we first chose matching proposed by Lowe [1], the nearest neighbor

ratio matching. On the one hand it uses no approximation and is really straight

forward, but on the other hand it is very slow, as each descriptor from the sample

has to be compared to each descriptor from the test image. And above all a

match is only based on three matching descriptors. Thus it does not work prop-

erly on a large database, as there is a great chance of a matching descriptor by

accident. Therefore we also use another approach, the Bow that has a quantiza-

tion, hence an approximation, but is much faster than the first approach allowing

us to do experiments with a larger sub dataset of ukbench. Also the chance of

mismatches, generated by randomly matching descriptors, decreases, as there is

only one vector for each image, but that vector describes the whole image. For

the test we select a sub dataset with s sample and t test images. The sample

images are a set of first images of the first s classes of ukbench, whereas the test

set consists of the sample image and its three duplicates and t− 4 first images of

just as many classes. Hence for a experiment with s samples and t test images

we need s · 4 + t− 4 images.

To compare SIFT to SIFTplus and SURF to SURFplus and also SIFTplus

to SURFplus in the case of matching, we first extract the original resp. plus

features with the parameters mentioned before in section 3.2. After that we

try to find matches for each sample with one specific matching technique. The

results are summed up to compare precision and recall of SIFT and SIFTplus with

different parameters. To compute the precision and recall we count the number

of true matches and false matches, meaning test images that are declared by the
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matching technique as a match but are not a match. In the best case we should

receive four true matches and zero false matches. In general the number of true

matches is called the number of true positives (tp), the missing true matches are

called false negatives (fn) and the number of false matches, or mismatches false

positives (fp). With these values we can compute the precision and recall values

of a matching experiment, denoted as

Precision =
tp

tp+ fp

and

Recall =
tp

tp+ fn

3.4.1 Nearest Neighbor Ratio

We begin with a rather simple and intuitive approach for matching that is pro-

posed by Lowe [1]. The main idea is that a matching test image to some sample

images must have several descriptors that are very similar to descriptors from the

sample image. To find matching descriptors, every descriptor from the sample

image has to be compared with each from the test image, by computing the Eu-

clidean distance and looking for the shortest distance. As a last step we then have

to be sure that this closest descriptor is really a matching one. That is where the

concept of the ratio is used, meaning a correct match has to be significantly closer

than the closest incorrect match. The reason is that for false matches there are

some other false matches that are almost as close as the first one to the descriptor

we are matching to. Therefore the second-closest is used to give an estimator of

the density of false matches withing a portion of false matches, that are acciden-

tally seen as the closest descriptor and hence are in fact incorrect matches. The

ratio of closest to second-closest neighbor of the descriptors is than a measure for

the similarity.

In detail we first compute the Euclidean distance between a descriptor Ds of

the sample image and each descriptor Dt of the test image. Then we determine

the nearest and second nearest descriptor Dt1 and Dt2, to compute the ratio of

their distances with respect to Ds, i.e.,

‖Ds −Dt1‖
‖Ds −Dt2‖

.

A matching descriptor Ds to the test image is then defined as a descriptor
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whose ratio of distances is lower than some threshold. Lowe [1] proposed that

if we find at least three matching descriptors in a test image, this test image is

a match. We first set this threshold to 0.8 as seen in [1]. But this threshold is

inappropriate for our matching, because first experiments show that every test

image is seen as a match, meaning that we have the highest number of mismatches

that is possible. Based on Lowes graph [1], represented in 3.8, and his example

on his web page [14] we decide to use a threshold of 0.6 in our experiments. This

threshold is chosen because it is the threshold in the middle between 0.45, the

threshold where the probability of correct matches is the highest, but also has a

high risk of loosing true positives, and 0.8 the lowest threshold, where we loose

less true positives, but start to get more false positives. Since the ratio uses the

idea of seeking for the exact nearest neighbor, this approach does not need an

approximation but is very slow, so if we want to manage an experiment in an

appropriate time, we have to pick a rather small dataset.

Figure 3.8: Lowes Figure 11: The PDF of the ratio of distances for correct matches(solid line)
and incorrect matches(dotted line)

Our first experiment is with a sub dataset of ukbench with 100 samples and

500 test images and the parameters mentioned before in section 3.2. Following

the steps of section 2.2, we generate SIFTplus and SURFplus features. Then we

try to find matching test images for each sample. Table 3.5 and Figure 3.9 to

Table 3.6 and Figure 3.10 show that with an increasing reduction of the image

size the precision increases too, whereas the recall decreases. In other words,

the more we scale down the less false matches we get but then we also lose true

matches. This holds for SIFTplus as well as for SURFplus, but with a varying

degree of increase and decrease. While SIFTplus results in an increase of up

to five-time of the precision, the precision of SURFplus has only a maximum

of 1.3-time increase. In the case of recall both of them lose about 25� of their
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original recall value. Thus scaling seems to have a greater effect on SIFT then

on SURF features. An extension of the image size has the same effect as a

reduction, considering recall and precision, but here we have to consider on an

additional time in the case of feature extraction. Comparing this to rotation,

depicted in Table 3.7 and Figure 3.11 to Table 3.8 and Figure 3.12, we can not

see a significant change in precision and recall, when increasing the degree of the

rotation angle. There is only a difference between the recall of SIFT resp. SURF

with rotation and without rotation of about 10�. In the case of precision there is

no significant change.

SIFT SIFTplus, scaling with:
0.70 0.75 0.80 0.85 0.90 0.98 1.2

Precision 1.59� 8.97� 6.34� 4.76� 4.19� 3.41� 4.22� 3.26�
Recall 94.68� 71.86� 78.92� 81.36� 84.93� 84.40� 84.93� 87.44�

Table 3.5: Comparing the Precision and Recall of SIFT to SIFTplus with different scaling
parameters

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0,70 0,75 0,80 0,85 0,90 0,98 1,00 1,20

P
re

ci
si

o
n

 o
r 

R
e

ca
ll 

Scale factor

Figure 3.9: Precision(blue) and Recall(red) of SIFT and SIFTplus with different scaling pa-
rameters

SURF SURFplus, scaling with:
0.70 0.75 0.80 0.85 0.90 0.98 1.2

Precision 2.27� 3.03� 2.90� 2.77� 2.73� 2.73� 2.51� 2.34�
Recall 85.92� 61.89� 68.09� 72.69� 77.63� 78.86� 81.53� 75.33�

Table 3.6: Comparing the Precision and Recall of SURF to SURFplus with different scaling
parameters
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Figure 3.10: Precision(blue) and Recall(red) of SURF and SURFplus with different scaling
parameters

SIFT SIFTplus, rotation with:
20° 25° 30° 35° 40°

Precision 1.59� 3.31� 3.03� 3.10� 3.22� 3.16�
Recall 94.68� 86.98� 86.51� 86.45� 86.38� 87.44�

Table 3.7: Comparing the Precision and Recall of SIFT to SIFTplus with different rotation
parameters
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Figure 3.11: Precision(blue) and Recall(red) of SIFT and SIFTplus with different rotation
parameters in degree

SURF SURFplus, rotation with:
20° 25° 30° 35° 40°

Precision 2.27� 2.54� 2.58� 2.52� 2.51� 2.46�
Recall 85.92� 76.76� 72.80� 73.88� 74.49� 73.58�

Table 3.8: Comparing the Precision and Recall of SURF to SURFplus with different rotation
parameters
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Figure 3.12: Precision(blue) and Recall(red) of SURF to SURFplus with different rotation
parameters in degree

In this context we also have to look at the execution time, as this also has an

influence on the pro and contra of this approach for a near duplicate retrieval.

As Lowes nearest neighbor ratio matching strategy demands a comparison of

each descriptor with every other descriptor, the execution time for finding the

duplicates of a sample image is heavily dependent on the number of features per

image, thus the execution time sinks the more features we remove through affine

transformations. As illustrated in Figure 3.13 to Figure 3.16 the time penalty

discussed in section 3.2 for scaling is negligible small compared to the big speed

up we get from a smaller set of keypoints, whereas the loss of time for rotation is

almost so high that, especially for SURF, the speed up for the matching becomes

less effective for the whole retrieval process. Note that SIFT and SURF have a

very big difference in the execution time as the features are extracted on different

computers.

To sum it up, scaling clearly has an effect on SIFT and SURFplus features, but

with more effect on SIFT than on SURFplus features, whereas rotation has almost

no effect on their precision. A decrease in the recall of both SIFT and SURF

features matching can be seen, but it does not matter how large the rotation

angle is. A enlargement of the images has less advantages than an reduction,

as enlarging leads to a greater additional time for features extraction, but with

the same effects in precision, recall, and number of keypoints, as a reduction of

the image. Although we lose some matches, we still get a rise in the precision,

hence get less mismatches and a great speed up. Also the decreasing number

of mismatches is characteristic for less noise and therefore an evidence that only

more stable keypoints remain, as discussed in section 2.1. With such different
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results for different scaling parameters, the parameters for a certain application

have to be chosen individually, as there is no general optimal value.
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Figure 3.13: SIFT and SIFTplus with different scaling parameters: The execution time for
extracting features(dark) for one image and looking for its matches(light), relative to those of
the original SIFT(scaling with 1.0).
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Figure 3.14: SIFT and SIFTplus with different rotation parameters in degree: The execution
time for extracting features(dark) for one image and looking for its matches(light), relative to
those of the original SIFT(angle 0°).
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Figure 3.15: SURF and SURFplus with different scaling parameters: The execution time for
extracting features(dark) for one image and looking for its matches(light), relative to those of
the original SURF(scaling with 1.0).
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Figure 3.16: SURF and SURFplus with different rotation parameters: The execution time for
extracting features(dark) for one image and looking for its matches(light), relative to those of
the original SURF(angle 0°).

3.4.2 Bag-of-words

Our second matching strategy is a BoW model, that is similar to the one proposed

by Nistér and Stewénius [2]. Here extracted features such as SIFT or SURF are

quantized and indexed in one step, to get a bag of visual words for each image. To

receive these visual words, each descriptor of an image is assigned to a visual word

by a tree with a hierarchical k-means clustering. As a visual word is only a simple

integer, each descriptor of an image is then represented by an integer. After this,

we sum these IDs up by counting how many of this visual words exist in the image,

to get a histogram, where each bin represents a visual word. A comparison of
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images is then done by comparing the normalized histogram vectors. Since each

image has only one histogram vector, there is only one comparison per image

needed, resulting in less comparisons than a all to all comparison of descriptor

vectors, and hence to a faster near duplicate retrieval. Also matching images

by accident is less possible, as we do not compare each single descriptor to each

other, but with the histograms, the whole content of an image to the content of

another one.

Following section three of [2] we first use a large set of descriptors, extracted

from about 16000 flickr images as our training data to build the vocabulary

tree. To create this tree we compute k clusters by doing a hierarchical k-means

clustering on the training data. Here k denotes the branch factor, meaning each

node in the tree has k children. Each vector of the training set is then assigned

to the closest cluster center. Thus we get k groups of vectors. The clustering and

partitioning process is then done with each group recursively, up to a maximum

of l-times, whereby each partitioning into k groups only respects the distribution

of the parent quantization cell. Figure 3.17 is Figure 2 from [2], illustrating the

process of building the vocabulary tree.

Figure 3.17: The process of building the vocabulary tree, with k = 3.

To find the visual word for one descriptor, we compare the descriptor with

each cluster center at each level. The closest cluster center is then a node of the

descriptors path through the tree, from the root to the leaf. This process cost

k · l dot products, which is very efficient as long as k is not too large. Each target

leaf represents a visual word, that is then assigned to the descriptor, whereas the

path down to the tree can be used as an integer ID for a scoring method, as it is

done by Nistér and Stewénius [2]. Finding visual words for each descriptor of an

image then results in a bag of visual words for this image.

Unlike Nistér and Stewénius [2] we now create a histogram vector from the

bag of visual words of each image. Each bin of the vector represents a visual

word, counting how many of these visual words appear in the image. To be able

to compare the histograms properly, each histogram is normalized to one, to get

a relative frequency of each word in an image. To find matches of a sample image,
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the L2−distance between the histogram of the sample image and the histograms

of the test images are computed. The closer the histogram of the test image is to

the histogram of the sample image, the more similar they are, and thus the more

likely the test image is a match. Compared to the nearest-neighbor ratio used

before in this chapter, the whole process for finding matching images is much

more efficient and reliable. The reason is first of all, that here we only have to

compare one histogram vector per test image, which is way more efficient than

comparing each descriptor of the sample with each one of the test image. Also

as the number of comparisons decreases, and as one histogram vector does not

stand for only one features out of many, but for the whole content of the image,

accidentally matchings are less likely. And also the extraction of visual words

and the computation of the histogram as an additional step after the features

extraction can be done very efficiently.

In our experiments we empirically chose a vocabulary of 3000 visual words,

where k is 3000 and l is 1. For our experiments we use a set of 500 sample

images and 2500 test images. First we assign the visual words with the extracted

original SIFT and SURF features of the images, and then with the SIFTplus and

SURFplus features with different scale and rotation parameters, as mentioned

in section 3.2. We then evaluate the four nearest neighbors to a histogram of a

sample. In the best case, four of them should be true positives showing the sample

image and its duplicates. As we only receive four images per query, which is the

size of a class in ukbench, the number of false positives and the number of false

negatives are the same. Hence precision and recall values are also of the same

size, so that we only show the values for the precision in our following figures.

As illustrated in Table 3.9 to Table 3.10 and Figure 3.18 to Figure 3.19 there

is no significant change in precision for a BoW matching with SIFTplus features,

instead there is a slight decrease of the precision from 29.5� up to 26.0� with

rising scale factor and up to 27.7� with rising rotation factor. For SURF this

decrease is even more significant for all scaling and rotation parameters of SURF-

plus. Table 3.11 to Table 3.12 and Figure 3.20 to Figure 3.21 depict that, with

refined features through scaling or rotation the precision sinks from 34.8� to

a minimum of 27.8� and 28.8� . Therefore in a BoW matching like ours, with

this vocabulary size, SIFTplus respectively SURFplus features appear not to be

more stable than the original SIFT features, as they do not reduce the number

of mismatches.

Also there is no noticeable speed up. On the one hand because the features

extraction and the visual words computation for SIFT and SIFTplus, respectively
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SURF and SURFplus features the execution time is not very different. On the

other hand because the number of comparisons for looking for matches for a

sample image, is the same for the original features and the refined ones, as there

is only one descriptor for each image and this descriptors have always the size of

the vocabulary.

Still there is one point on the upside: the memory space. For a certain

application with a large image database, where the extracted features are stored,

to be assigned to visual words and a later histogram matching, SIFTplus can still

be considered as an memory saving alternative to SIFT, as a scaling factor of only

0.9 removes about 40� of the features while having almost the same precision.

The same applies for the rotation, where a rotation angle of only 20° can save

about 34� of the number of keypoints while having almost no loss of precision.

For Surf this saving of both, keypoints and precision, is valid as well.

SIFT SIFTplus, scaling with:
0.70 0.75 0.80 0.85 0.90 0.98 1.2

Precision 29.5� 26.1� 26.3� 26.8� 27.0� 29.3� 28.2� 27.4�

Table 3.9: Comparing the Precision of SIFT to SIFTplus with different scaling parameters
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Figure 3.18: Precision of SIFT and SIFTplus with different scaling parameters. Scaling param-
eter 1.0 denotes the original SIFT.
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SIFT SIFTplus, rotation with:
20° 25° 30° 35° 40°

Precision 29.5� 28.6� 28.1� 27.9� 27.8� 27.7�

Table 3.10: Comparing the Precision of SIFT to SIFTplus with different rotation parameters
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Figure 3.19: Precision of SIFT and SIFTplus with different rotation parameters. Rotation
angle 0° denotes the original SIFT.

SURF SURFplus, scaling with:
0.70 0.75 0.80 0.85 0.90 0.98 1.2

Precision 34.8� 27.3� 27.4� 28.5� 29.5� 31.1� 32.1� 30.8�

Table 3.11: Comparing the Precision of SURF to SURFplus with different rotation parameters
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Figure 3.20: Precision of SURF and SURFplus with different scaling parameters. Scaling
parameter 1.0 denotes the original SURF.
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SURF SURFplus, rotation with:
20° 25° 30° 35° 40°

Precision 34.8� 28.3� 28.8� 28.8� 28.2� 28.8�

Table 3.12: Comparing the Precision of SURF to SURFplus with different rotation parameters
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Figure 3.21: Precision of SURF and SURFplus with different rotation parameters. Rotation
angle 0° denotes the original SIFT.
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4 Conclusion

We have presented a method to refine SIFT and SURF features to a set of more

stable SIFTplus and SURFplus features. The approach is build upon the fact

that SIFT and SURF features are invariant to affine transformations, i.e. scaling

and rotation, and therefore are not affected by such transformations of the image.

Thus they are seen as more stable features. We introduced a feature map for each

transformed image, that contains the corresponding coordinates in the original

image, for each feature. With these features maps less stable features are found

and then removed. The performance of our the remaining features are then tested

in a near-duplicate image retrieval with two different matching techniques.

Our experiments have shown that even with a light scaling with 0.9 the num-

ber of keypoints can be reduced to 57� for SIFT features and 64� for SURF

features. For rotation the size of the angle does not matter. In any case rotation

results in a reduction of keypoints to about 66� for SIFT and 45� for SURF.

We have seen that there is a connection between the scale from which the feature

comes from and its likelihood to be removed during refinement with a scaling.

Experiments show that especially keypoints from really small scales and from a

certain bigger scale up, are almost completely removed.

In a nearest-neighbor ratio matching our approach has shown some good

improvements. Although the recall sinks, the approach is still an alternative for

some applications as we get a great plus in precision, and hence less mismatches.

Furthermore a speed up brings another advantage, considering the execution time

for features extraction and matching. We figured out, that our refined features

can at least half the execution time for queries in a near-duplicate retrieval.

A matching experiment with a vocabulary tree with a vocabulary size of 3000

has shown that, although no improvement in precision, recall or execution time

can be expected, we may still benefit from the reduced number of keypoints in

memory space demanding applications.
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4 Conclusion

As we have only examined each affine transformation individually for two

matching techniques, future work with our approach can be done in the case of

parameters, the similarity threshold, or combination of these two affine transfor-

mations. Also other vocabulary trees may give a better result, leading to appli-

cation that can take advantage from both, refined features and BoW matching

methods.
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