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Executive Summary 
This deliverable presents the “Preliminary Eurolab-4-HPC Roadmap” which 
summarizes the current state, as of August 2016, of the on-going road 
mapping effort within the EC CSA Eurolab-4-HPC. The “Preliminary Eurolab-
4-HPC Roadmap” is a publicly available document, which will be used to 
foster discussions and further inputs towards the final “Eurolab-4-HPC 
Roadmap” due in August 2017. 

The Eurolab-4-HPC Roadmap targets a long-term roadmap from 2022 to 
2030 for High-Performance Computing (HPC). Because of the long-term 
perspective and its speculative nature, we started with an assessment of 
future computing technologies that could influence HPC hardware and 
software. This “Report on Disruptive Technologies for Years 2022-2030” is 
available in the Appendix. The proposal on research topics is derived from 
the report and discussions within the road mapping working groups. 

The big picture: There is an ever-growing need of current and new 
applications for high performance in supercomputers, but also for mid-level 
and embedded computing.  

High-performance computing (HPC) typically targets engineering 
simulations with numerical programs mostly based on floating-point 
computations. We expect the continued scaling of such engineering 
applications to continue beyond Exascale computers.  

However, two trends are changing the landscape for high-performance 
computing and supercomputers. The first trend is the emergence of data 
analytics complementing simulation in scientific discovery. While simulation 
still remains as a major pillar for science, there are massive volumes of 
scientific data that are now gathered by sensors augmenting data from 
simulation available for analysis. 

The second trend is the emergence of cloud computing and warehouse-
scale computers (also known as data centers). Data centers consist of low-
cost volume processing, networking and storage servers, aiming at cost-
effective data manipulation at unprecedented scales. The scale at which 
they host and manipulate (e.g., personal, business) data has led to 
fundamental breakthroughs in data analytics.  

There are a myriad of challenges facing massive data analytics including 
management of highly distributed data sources, and tracking of data 
provenance, data validation, mitigating sampling bias and heterogeneity, 
data format diversity and integrity, integration, security, sharing, 
visualization, and massively parallel and distributed algorithms for 
incremental and/or real-time analysis. 

Large datacentres are fundamentally different from traditional 
supercomputers in their design, operation and software structures. 
Particularly, big data applications in data centres and cloud computing 
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centres require different algorithms and differ significantly from traditional 
HPC applications such that they may not require the same computer 
structures.  

With modern HPC platforms being increasingly built using volume servers, 
there are a number of features that are shared among warehouse-scale 
computers and modern HPC platforms including dynamic resource allocation 
and management, high utilization, parallelization and acceleration, 
robustness and infrastructure costs. These shared concerns will serve as 
incentive for the convergence of the platforms. 

There are also a number of ways traditional HPC ecosystems differ from 
modern warehouse-scale computers: efficient virtualization, adverse 
network topologies and fabrics in cloud platforms, low memory and storage 
bandwidth in volume servers. HPC customers must adapt to co-exist with 
cloud services; warehouse-scale computer operators must innovate 
technologies to support the workload and platform at the intersection of 
commercial and scientific computing. 

It is unclear if a convergence of HPC with big data applications will arise. 
Investigating hardware and software structures targeting such a 
convergence is of high research and commercial interest. 

However, further applications will emerge that may be unknown today. 
Recently, Deep Neural Networks (DNN) for back propagation learning of 
complex patterns emerged as new technique penetrating different 
application areas. DNN learning requires high performance and is often run 
on high-performance supercomputers. GPU accelerators show as very 
effective but also special purpose neuromorphic chips. It is widely assumed 
that it will be applied in future autonomous cars thus opening a very large 
market segment for embedded HPC.  

Embedded high-performance computing demands are upcoming needs. It 
may concern smart phones but also applications like autonomous driving, 
requiring on-board high-performance computers. In particular the trend 
from current advanced ADAS (automatic driving assistant systems) to 
piloted driving (2018-2020) and to fully autonomous cars in next decade 
will increase on-board performance requirements and may even be coupled 
with high-performance supercomputers in the Cloud. The target is to 
develop systems that adapt more quickly to changing environments, 
opening the door to highly automated and autonomous transport, capable 
of eliminating human error in control, guidance and navigation and so 
leading to more safety. High-performance computing devices in cyber-
physical systems will have to fulfil further non-functional requirements such 
as timeliness, (very) low energy consumption, security and safety. 

Power and thermal management is considered as highly important and will 
continue its preference in future. Post-Exascale computers will target more 
than 1 Exaflops with less than 30 MW power consumption requiring 
processors with a much better performance per watt rate as available 
today.  On the other side embedded computing needs high performance 
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with low energy consumption. The hardware target is widely the same, a 
high performance per watt. 

Apart from mastering the technical challenges, reducing the environmental 
impact of the upcoming computing infrastructures is an important matter as 
well. Reducing CO2 emissions and overall power consumption should be 
pursued. A combination of hardware like new processor cores, accelerators, 
memory and interconnect technology, and software techniques for energy 
and power management will need to be cooperatively deployed in order to 
deliver energy efficient solutions. 

Because of the foreseeable end of CMOS scaling, new technologies are 
under development, such as, for example, Die Stacking and 3D Chip 
Technologies, Non-volatile Memory (NVM) Technologies, Photonics, 
Resistive Computing, Neuromorphic Computing, Quantum Computing, 
Nanotubes, Graphene, and diamond based transistors. Since it is uncertain 
when some of the technologies will mature, it is hard to predict which ones 
will prevail. The technologies will strongly impact the hardware and software 
of future HPC systems, in particular the processor logic itself, the (deeper) 
memory hierarchy, and new heterogeneous accelerators. This will 
significantly increase software complexity, demanding more and more 
intelligence across the programming environment like compiler, run-time 
and tool intelligence driven by appropriate programming models. Manual 
optimization of the data layout, placement, and caching will become 
uneconomic and time consuming, and will, in any case, soon exceed the 
abilities of the best human programmers.  

But it is also possible, that new materials like graphene, nanotubes and 
diamonds could be used to run processors at much higher frequencies and 
with that may even enable to significantly increase the performance of 
single threaded programs. If accurate results are not necessarily needed, 
another speed up could emerge from more efficient special execution units, 
based on analog, or even on a mix between analog and digital technologies. 
An effective way to reason at run time on the amount of inaccuracy, which 
will be introduced to a system, is needed. 

New memory technologies like memristors may allow on-chip integration, 
enabling a very tightly coupled communication between the memory and 
the processing unit. With the help of memory computing algorithms, data 
could be pre-processed “in-memory”.  

Optical networks on die and Terahertz based connections may eliminate the 
need for preserving locality since the access time to local storage may not 
be as significant in future as it is today. Such advancements will lead to 
storage-class memory, which features similar speed, addressability and cost 
as DRAM combined with the non-volatility of storage.  In the context of 
HPC, such memory can reduce the cost of checkpointing or eliminate it 
entirely.   

The adoption of neuromorphic, resistive and/or quantum computing as new 
accelerators may have a dramatic effect on the system software and 
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programming models.  It is currently unclear whether it will be sufficient to 
offload tasks, as on GPUs, or whether more dramatic changes will be 
needed. By 2030, disruptive technologies may have forced the introduction 
of new and currently unknown abstractions that are very different from 
today. Such new programming abstractions may include domain specific 
languages that provide greater opportunities for automatic optimization. 
Automatic optimization requires advanced techniques in the compiler and 
runtime system. We also need ways to express non-functional properties of 
software in order to trade various metrics: performance vs. energy, or 
accuracy vs. cost, both of which may become more relevant with near 
threshold, approximate computing or accelerators. 

Nevertheless, today’s abstractions will continue to evolve incrementally and 
will continue to be used well beyond 2030, since scientific codebases have 
very long lifetimes, on the order of decades.  

Execution environments will increase in complexity requiring more 
intelligence, e.g., to manage, analyze and debug millions of parallel threads 
running on heterogeneous hardware with a diversity of accelerators, while 
dynamically adapting to failures and performance variability. This requires 
an evolution of the incumbent standards such as OpenMP to provide higher-
level abstractions. An important question is whether and to what degree 
these fundamental abstractions may be impacted by disruptive 
technologies.  Spotting anomalous behavior may be viewed as a big data 
problem, requiring techniques from data mining, clustering and structure 
detection. 

The work needed: As new technologies require major changes across the 
stack, a vertical funding approach is needed, from applications and software 
systems through to new hardware architectures and potentially down to the 
enabling technologies. We see HP Lab’s memory-driven computing 
architecture “The Machine” as an exemplary project that proposes a low-
latency NVM (Non-Volatile Memory) based memory connected by photonics 
to processor cores. Projects could be based on multiple new technologies 
and similarly explore hardware and software structures and potential 
applications. Required research will be interdisciplinary. Stakeholders will 
come from academic and industrial research. 

The opportunity: The opportunity may be development of competitive new 
hardware/software technologies based on upcoming new technologies to 
advantageous position European industry for the future. Target areas could 
be High-Performance Computing and Embedded High-Performance devices. 
The drawback could be that the chosen base technology may not be 
prevailing but be replaced by a different technology. For this reason, efforts 
should be made to ensure that aspects of the developed hardware 
architectures, system architectures and software systems could also be 
applied to alternative prevailing technologies. For instance, several NVM 
technologies will bring up new memory devices that are several magnitudes 
faster than current Flash technology and the developed system structures 
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may easily be adapted to the specific prevailing technologies, even if the 
project has chosen a different NVM technology as basis.  
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1. Introduction	
The EC CSA Eurolab-4-HPC (Sept. 2015 – August 2017) will establish a 
long-term roadmap for excellence in European High-Performance 
Computing research, with a timescale beyond Exascale computers, i.e. a 
timespan of approximately 2022-2030.  

The Eurolab-4-HPC roadmap will complement existing efforts such as the 
ETP4HPC SRA, an industry-led initiative to build a globally competitive HPC 
system value chain, and the HiPEAC Vision of HiPEAC CSA.  

Development of the EuroLab-4-HPC roadmap will be aligned with ETP4HPC, 
ensuring that the multidisciplinary research done by the EuroLab-4-HPC 
consortium contributes with key technologies and research trends needed 
by the ETP4HPC SRA and its future revisions.  

The EuroLab-4-HPC roadmap will also be developed in close collaboration 
with the upcoming HiPEAC Vision 2017 of HiPEAC CSA. 

The current state of available roadmaps that are adjacent to the Eurolab-4-
HPC roadmap is shown in the table below: 

	

	 Goal	 Timespan	 SWOT/	
Political	 Scope	

HiPEAC Vision 
Steer European academic 
research 
(driven by industry) 

Short: 3 years, 
Mid: 6 years, 
Long: > 2020 

Yes HPC + 
embedded 

ETP4HPC SRA/ 
EXDCI 

Strengthening European 
[industrial]  
HPC ecosystem 

6 years 
(2014 to 2020) Yes HPC except 

applications 

PRACE Scientific Case [Academic] need for European 
HPC infrastructure 

8 years 
(2012 to 2020) Yes HPC 

applications 
EESI (European 

Exascale Software 
Initiative) 

Development of efficient 
Exascale applications 5 to 10 years No Exascale 

applications 

BDVA (Big Data Value 
Association) Big Data technologies roadmap 2020 - Big data 

Rethink Big 
Roadmap for European 
Technologies in Hardware and 
Networking for Big Data 

 - Big data 

ECSEL MASRIA 
European leadership in enabling 
and industrial technologies. 
Competitive EU ECS industry. 

2015 roadmap 
to about 2025 Yes 

Electronic 
components 
and systems 
(ECS) 

Next Generation 
Computing Roadmap 

Strengthening European 
industry 

2014: 10 to 15 
years  

HPC  
extensively 
covered 

Eurolab-4-HPC Academic excellence in HPC 2022-2030 No Whole HPC 
stack 

The Eurolab-4-HPC roadmap is developed as a research roadmap with a 
substantially longer window than most of the roadmaps shown above. It is 
our target to stick to technical matters and provide an academic research 
perspective. Because targeting the post-Exascale era with a horizon of 
approximately 2022-2030 will be highly speculative, we proceed as follows:	
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1. Select disruptive technologies that may be technologically feasible in 
the next decade. 

2. Assess the potential hardware architectures and their characteristics. 
3. Assess what that could mean for the different working groups (WG) 

topics (concerns all WGs). 

The roadmap roughly follow the structure: 
"IF technology ready THEN foreseeable impact on WG topic could be" 

The first task performed was to select potentially disruptive technologies 
and summarize its potential for the next decade with the help of experts in 
a “Report on Disruptive Technologies”.  The report has reached a stage of 
maturity and its impact on hardware and software is provided in working 
group zero, which is the basis for all other working groups. The full report is 
provided in the appendix. 

0. Impact of disruptive technologies 
(Theo Ungerer, University of Augsburg, Germany) 

Aside from a working group zero on disruptive technologies, we defined five 
more and assigned working group leaders: 

1. New technologies and hardware architectures 
(Avi Mendelson, Technion, Haifa) 

2. System software and programming environment 
(Paul Carpenter, BSC, Barcelona) 

3. HPC application requirements 
(Paul Carpenter, BSC, Barcelona) 

4. Vertical challenges: Green ICT, energy and resiliency 
(Bastian Koller and Axel Tenschert, HLRS, Stuttgart)  

5. Convergence of HPC, with IoT and the Cloud 
(Babak Falsafi, EPFL, Lausanne) 

Altogether about 46 contributors signed up to work on the roadmap. 

The timescale concerns: 

2016, April 30: We delivered an input to the EC consultation process 
regarding "game changing technology" 
(https://ec.europa.eu/futurium/en/content/fet-proactive). 

2016, August 31: preliminary roadmap 

2017, August 31: final roadmap 

The rest of this document is structured following the topics of the working 
groups. The next section will provide the findings from the disruptive 
technologies and summarize the Potential Long-Term Impacts of Disruptive 
Technologies for HPC Hardware and Software in separate subsections. 
Section 3 targets New Technologies and Hardware Architectures, Section 4 
focuses on System Software and Programming Environment, Section 5 on 
HPC Application Requirements, Section 6 on Green ICT, Energy and 
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Resiliency as Vertical Challenges, and Section 7 on the Convergence of HPC, 
with IoT and the Cloud. 
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2. Impact	of	Disruptive	Technologies	
Summary	of	Potential	Long-Term	Impacts	of	Disruptive	Technologies	for	
HPC	Hardware		

Potential long-term impacts of disruptive technologies could concern the 
processor logic, memory hierarchy, and future hardware accelerators. 

Processor logic could be totally different if materials like graphene, 
nanotube or diamond would replace classical integrated circuits based on 
silicon transistors, or could integrate effectively with traditional CMOS 
technology to overcome its current major limitations like limited clock rates 
and heat dissipation.  

A physical property that these materials share is the high thermal 
conductivity: Diamonds for instance can be used as a replacement for 
silicon, allowing diamond based transistors with excellent electrical 
characteristics. Graphene and nanotubes are highly electrically conductive 
and could allow a reduced amount of heat generated because of the lower 
dissipation power, which makes them more energy efficient. With the help 
of those good properties, less heat in the critical spots would be expected 
which allows much higher clock rates and highly integrated packages. 
Whether such new technologies will be suitable for computing in the next 
decade is very speculative. 

Furthermore, Photonics, a technology that uses photons for communication, 
can be used to replace communication busses to enable a new form of 
inter- and intra-chip communication. 

Current CMOS technology may presumably scale continuously in the next 
decade, down to 6 or 5 nm. However, scaling CMOS technology leads to 
steadily increasing costs per transistor, power consumption, and to less 
reliability. Die stacking could result in 3D many-core microprocessors with 
reduced intra core wire length, enabling high transfer bandwidths, lower 
latencies and reduced communication power consumption. 

3D stacking will also be used to scale flash memories, because 2D NAND 
flash technology does not further scale. In the long run even 3D flash 
memories will probably be replaced by memristor or other non-volatile 
memory (NVM) technologies. These, depending on the actual type, allow 
higher structural density, less leakage power, faster read- and write access, 
more endurance and can nevertheless be more cost efficient. 

However, the whole memory hierarchy may change in the upcoming 
decade. DRAM scaling will only continue with new technologies, in fact 
NVMs, which will deliver non-volatile memory potentially replacing or being 
used in addition to DRAM. Some new non-volatile memory technologies 
could even be integrated on-chip with the microprocessor cores and offer 
orders of magnitude faster read/write accesses and also much higher 
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endurances than flash. Intel demonstrated the possible fast memory 
accesses of the 3D-XPoint NVM Technology used in their Optane 
Technology. HP’s computer architecture proposal called “The Machine” 
targets a machine based on new NVM memory and photonic busses. The 
Machine sees the memory instead of processors in the centre. This so called 
Memory-Driven Computing unifies the memory and storage into one vast 
pool of memory. HP proposes advanced photonic fabric to connect the 
memory and processors. Using light instead of electricity is the key to 
rapidly accessing any part of the massive memory pool while using much 
less energy. 

The Machine is a first example of the new Storage-class Memory (SCM), 
i.e., a non-volatile memory technology in between memory and storage, 
which may enable new data access modes and protocols that are neither 
‘memory’ nor ‘storage’. It would particularly increase efficiency of fault 
tolerance check pointing, which is potentially needed for shrinking CMOS 
processor logic that leads to less reliable chips. There is a major impact 
from this technology on software and computing. SCM provides orders of 
magnitude increase in capacity with near-DRAM latency which would push 
software towards in-memory computing.  

Resistive Computing, Neuromorphic Computing and Quantum Computing 
are promising technologies that may be suitable for new hardware 
accelerators but less for new processor logic. Resistive computing promises 
a reduction in power consumption and massive parallelism. It could enforce 
datacentric and reconfigurable computing, leading away from the Von-
Neumann architecture. Humans can easily outperform currently available 
high-performance computers in tasks like vision, auditory perception and 
sensory motor-control. As Neuromorphic Computing would be efficient in 
energy and space for artificial neural network applications, it would be a 
good match for these tasks. More lack of abilities of current computers can 
be found in the area of unsolved problems in computer science. Quantum 
Computing might solve some of these problems, with important implications 
for public-key cryptography, searching, and a number of specialized 
computing applications.  

Summary	of	Potential	Long-Term	Impacts	of	Disruptive	Technologies	for	
HPC	Software	and	Applications		

New technologies will lead to new hardware structures with demands on 
system software and programming environment and also opportunities for 
new applications.  

CMOS scaling will require system software to deal with higher fault rate and 
less reliability. Also programming environment and algorithms may be 
affected, e.g., leading to specifically adapted approximate computing 
algorithms. 

The most obvious change will result from changes in memory technology. 
NVM will prevail independent of the specific memristor technology that will 
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win. The envisioned Storage-Class Memory (SCM) will influence system 
software and programming environments in several ways:  

• Memory and storage will be accessed in a uniform way. 
• Computing will be memory-centric. 
• Faster memory accesses by the combination of NVM and photonics 

will lead to a shallower memory hierarchy envisioning a flat memory 
where latency does not matter anymore. 

• Read accesses will be faster than write accesses, though, software 
needs to deal with the read/write disparity, e.g., by database 
algorithms that favour more reads over writes. 

• NVM will allow in-memory checkpointing, i.e. checkpoint replication 
with memory to memory operations. 

• Software and hardware needs to deal with limited endurance of NVM 
memory. 

A lot of open research questions arise from these changes for software.  

Full 3D stacking may pose further requirements to system software and 
programming environments: 

• The higher throughput and lower memory latency when stacking 
memory on top of processing may require changes in programming 
environments and application algorithms. 

• Stacking specialized (e.g. analog) hardware on top of processing and 
memory elements lead to new (embedded) high-performance 
applications. 

• Stacking hardware accelerators together with processing and memory 
elements require programming environment and algorithmic changes. 

• 3D multicores require software optimizations able to efficiently utilize 
the characteristics of 3rd dimension, .i.e. e.g., different latencies and 
throughput for vertical versus horizontal interconnects. 

• 3D stacking may to new form factors that allow for new (embedded) 
high-performance applications. 

Photonics will be used to speed up all kind of interconnects – layer to layer, 
chip to chip, board to board, and compartment to compartment with 
impacts on system software, programming environments and applications 
such that: 

• A flatter memory hierarchy will be reached (combined with 3D 
stacking and NVM) requiring software changes for efficiency 
redefining what is local in future. 

• It is mentioned that energy-efficient Fourier-based computation is 
possible as proposed in the Optalysys project. 

• The intrinsic end-to-end nature of an efficient optical channel will 
favour broadcast/multicast based communication and algorithms. 

• A full photonic chip will totally change software in a currently rarely 
investigated manner. 

A number of new technologies will lead to new accelerators. We envision 
programming environments that allow defining accelerator parts of an 
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algorithm independent of the accelerator itself. OpenCL is such a language 
distinguishing “general purpose” computing parts and accelerator parts of 
an algorithm, where the accelerator part can be compiled to GPUs, FPGAs, 
or many-cores like the Xeon Phi. Such programming environment 
techniques and compilers have to be enhanced to improve performance 
portability and to deal with potentially new accelerators as, e.g., 
neuromorphic chips, quantum computers, in-memory resistive computing 
devices etc. System software has to deal with these new possibilities and 
map computing parts to the right accelerator. 

Neuromorphic Computing is particularly attractive for applying artificial 
neural network and deep learning algorithms in those domains where, at 
present, humans outperform any currently available high-performance 
computer, e.g., in areas like vision, auditory perception, or sensory motor-
control. Neural information processing is expected to have a wide 
applicability in areas that require a high degree of flexibility and the ability 
to operate in uncertain environments where information usually is partial, 
fuzzy, or even contradictory. The success of the IBM Watson computer is an 
example for such new application possibilities. 
It is envisioned that neuromorphic computing could help understanding the 
multi-level structure and function of the brain and even reach an electronic 
replication of the human brain at least in some areas such as perception 
and vision. 
 
Quantum Computing potentially solves problems impossible by classical 
computing, but posts challenges to compiler and runtime support. 
Moreover, quantum error correction is needed due to high error rates (10-3). 
Applications of quantum computers could be new encryptions, quantum 
search, quantum random walk, etc. 

Resistive Computing may lead to massive parallel computing based on data-
centric and reconfigurable computing paradigms. In memory computing 
algorithms may be executed on specialised resistive computing 
accelerators. 

Quantum Computing, Resistive Computing as well as Graphene and 
Nanotube-based computing are still highly speculative hardware 
technologies.  
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3. New	Technologies	and	Hardware	Architectures	
Applying	Disruptive	Technologies	More	Aggressively	

A valuable way to evaluate potential disruptive technologies is to examine 
their impact on the fundamental assumptions that are made when building 
a system using current technology, in order to determine whether future 
technologies have the potential to change these assumptions, and if yes 
what the impact of that change is. 

Power	is	a	First	Class	Citizen	when	Committing	to	New	Technology	

For the last decade, power and thermal management has been of high 
importance. The entire market focus has moved from achieving better 
performance through single thread optimizations, e.g., speculative 
execution, towards simpler architectures that achieve better performance 
per watt, provided that vast parallelism exists. The problem with this 
approach is that it is not always easy to develop parallel programs and 
moreover, those parallel programs are not always performance portable, 
meaning that each time the architecture changes, the code may have to be 
rewritten. 

Research on new materials, such as graphene, nanotubes and diamonds as 
(partial) replacements for silicon can turn the tables and help to produce 
chips that could run at much higher frequencies and with that may even use 
massive speculative techniques to significantly increase the performance of 
single threaded programs. A change in power density vs. cost per area will 
have an effect on the likelihood of dark silicon. 

The reasons why such technologies are not state of the art yet are their 
premature state of research, which is still far from fabrication, and the 
unknown production costs of such high performing chips. But we may 
assume that in 10 to 20 years the technologies may be mature enough or 
other such technologies will be discovered. 

Going back to improved single thread performance may be very useful for 
many segments of the market. Reinvestment in this field is essential since it 
may change the way we are developing and optimizing algorithms and 
code. 

Locality	of	References	

Locality of references is a central assumption of the way we design systems. 
The consequence of this assumption is the need of hierarchically arranged 
memories, 3D stacking and more. 

But new technologies, including optical networks on die and Terahertz 
based connections, may reduce the need for preserving locality, since the 
differences in access time and energy costs to local memory vs. remote 
storage or memory may not be as significant in future as it is today. 
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When such new technologies find their practical use, we can expect a 
massive change in the way we are building hardware and software systems 
and are organizing software structures. 

The restriction here is purely the technology, but with all the companies and 
universities that work on this problem, we may consider it as lifted in the 
future. 

Digital	and	Analog	Computation		

The way how today’s computers are built is based on the digital world. This 
allows the user to get accurate results, but with the drawbacks of cost of 
time, energy consumption and loss of performance. But accurate results are 
not always needed. Due to this limitation the production of more efficient 
execution units, based on analog or even a mix between analog and digital 
technologies could be possible. Such an approach can revolutionize the way 
of the programming and usage of future systems.  

Currently the main problem is, that we have no effective way to reason at 
run time on the amount of inaccuracy we introduces to a system. 

End	of	Von	Neumann	Architecture	

The Von Neumann architecture assumes the use of central execution units 
that interface with different layers of memory hierarchies. This model, 
serves as the execution model for more than three decades. But this model 
is not effective in terms of performance for a given power.  

New technologies like memristors may allow an on-chip integration of 
memory which in turn grants a very tightly coupled communication between 
memory and processing unit. 

Assuming that these technologies will be mature, we could change 
algorithms and data structures to fit the new design and thus allow 
memory-heavy “in-memory” computing algorithms to achieve significantly 
better performance. 

Conclusions	

Thermal dissipation and power consumption currently are important 
limitations. Dark Silicon (i.e. large parts of the chip have to stay idle due to 
thermal reasons) may not happen when specific new technologies ripen. 
New software and hardware interfaces will be the key for successfully 
applying future disruptive technologies. 

We may need to replace the notion of general purpose computing with 
clusters of specialized compute solution. Accelerators will be “application 
class” based. 

It is important to understand the usage model in order to understand future 
architectures/systems. 
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We propose to focus on: 

• Cloud based (private and public) solutions 
• IoT, mobile and end-devices 
• Architectures for machine learning   
• Architectures for streaming data manipulation 
• Data-flow compute models 
• New I/O devices 

Open	Questions	und	Research	Challenges		

The Discussion above leads to the following principal questions und research 
challenges for future HPC hardware architectures and implicitly for software 
and applications as well: 

• Impact, if power and thermal will not be limiter anymore (frequency 
increase vs. many-cores)? 

• Impact, if Dark Silicon can be avoided? 
• Impact, if communication becomes so fast so locality will not matter? 
• Impact, if data movement could be eliminated (and so data locality)? 
• Impact, if memory and I/O could be unified and efficiently be 

managed? 
• Evolution of system complexity: will systems become more complex 

or less complex in future? 
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4. System	Software	and	Programming	Environment	
Scope	

The system software is the part of the HPC software stack that is optimized 
by the HPC vendor and managed by the system’s operator, and it includes 
the Operating System (OS), cluster management tools, distributed file 
systems, and resource management software (job scheduler). It is essential 
for an operational HPC system to have an efficient system software stack 
below the end user’s application.  The programming environment comprises 
the development tools used to build the end user’s application (compilers, 
IDEs, debuggers, and performance analysis tools) along with the associated 
abstractions (e.g. programming models), as well as the runtime 
components: libraries and runtime systems. Workflow management tools 
and commonly pre-installed application libraries such as BLAS and LAPACK 
are also in the scope of this section. 

Current	Research	Trends	

Sustained	Increases	in	System	Complexity,	Specialization	and	
Heterogeneity	

An important role of the system software and programming environment is 
to provide the application developers with common standardized 
abstractions. Such abstractions greatly improve programmer productivity 
and portability across systems. Today’s dominant abstractions include 
Fortran, C, MPI, POSIX-style file systems, threads and locking, which are all 
relatively low-level. By 2030, disruptive technologies may have forced the 
introduction of new and currently unknown low-level abstractions that are 
very different from these, and this topic is addressed below. Nevertheless, 
today’s abstractions will continue to evolve incrementally and probably 
increase in their level of abstraction, and will continue to be used well 
beyond 2030, since scientific codebases have very long lifetimes, on the 
order of decades. Developers are unwilling to adopt a new programming 
language or API until they are convinced that it will be supported for a long 
time. 

Continuous CMOS scaling and 3D stacking are pointing towards increasingly 
complex hardware. High-bandwidth (3D integrated) and non-volatile 
memories (memristors, etc.) will lead to different memory hierarchies. 
Increasing performance per watt demands accelerators (many-core, GPU, 
vector, dataflow, and their successors), heterogeneous processors (big and 
small cores) and potentially reconfigurable logic (FPGA).  The choice of 
processor cores will likely become increasingly heterogeneous (within a 
system) and varied (across systems). Certain techniques for energy 
efficiency (near threshold, DVFS, energy-efficient interconnects) increase 
timing variability among the processes in an HPC application.  Virtualization, 
if adopted, will also increase timing variability. In addition to hardware 
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complexity, execution environments will also increase in complexity, 
through interactive use (which will require workloads to adjust to 
dynamically variable numbers of nodes, cores, memory capacities, and so 
on).   

Hiding or mitigating this increasingly complex and varied hardware requires 
more and more intelligence across the programming environment.  Manual 
optimization of the data layout, placement, and caching will become 
uneconomic and time consuming, and will, in any case, soon exceed the 
abilities of the best human programmers.  There needs to be a change in 
mentality from programming “heroism” towards trusting the compiler and 
runtime system (as in the move from assembler to C/Fortran). Automatic 
optimization requires advanced techniques in the compiler and runtime 
system.  In the compiler, there is opportunity for both fully automated 
transformations and the replacement of manual refactoring by automated 
program transformations under the direction of human programmers (e.g. 
Halide [14]).  Advanced runtime and system software techniques, e.g., task 
scheduling, load balancing, malleability, caching, energy proportionality are 
needed.  

Increasing complexity also requires an evolution of the incumbent standards 
such as OpenMP, in order to provide the right programming abstractions.  
There is as yet no standard language for GPU-style accelerators (CUDA is 
controlled and only well supported by a single vendor and OpenCL provides 
portability). Domain-specific languages (e.g. for partial differential 
equations, linear algebra or stencil computations) allow programmers to 
describe the problem in terms much closer to the original scientific problem, 
and they provide greater opportunities for automatic optimization.  In 
general there is a need to raise the level of abstraction. In some domains 
(e.g. embedded) prototyping is already done in a high-level environment 
similar to a DSL (Matlab), but the implementation still needs to be ported to 
a more efficient language. A different opinion expressed the need to 
continue to provide a (simple) cost model, in similar terms to the 
correspondence of the programming language C to a von Neumann CPU, so 
that programmers could have an intuition about the effect on performance.  
There is scope for ways to express non-functional properties of software, as 
commonly done in embedded systems, in order to trade various metrics, 
e.g., performance vs. energy or accuracy vs. cost, both of which may 
become more relevant with near threshold, approximate computing or 
accelerators (quantum/neuromorphic).  

There is a need for global optimization across all levels of the software 
stack, including OS, runtime system, application libraries, and application.  
Examples of global problems that span multiple levels of the software stack 
include a) support for resiliency (system/application-level checkpointing), b) 
data management transformations, such as data placement in the memory 
hierarchy, c) minimising energy (sleeping and controlling DVFS), d) 
constraining peak power consumption or thermal dissipation, and e) load 
balancing. Different software levels have different levels of information, and 
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must cooperate to achieve a common objective subject to common 
constraints, rather than competing or becoming unstable.   

Complex	Application	Performance	Analysis	and	Debugging	

Performance analysis and debugging are particularly difficult problems 
beyond Exascale.  The problems are two-fold. The first problem is the 
enormous number of concurrent threads of execution (millions), which 
provides a scalability challenge (particularly in performance tools, which 
must not unduly affect the original performance) and in any case there will 
be too many threads to analyse by hand.  Secondly, there is an increasing 
gap between (anomalous) runtime behaviour and the user’s changes in the 
source code needed to fix it, due to libraries, runtime systems and system 
software that the programmer may know little or nothing about. 

Spotting anomalous behaviour, such as the root cause of a performance 
problem or bug, will be a “big data” problem, requiring techniques from 
data mining, clustering and structure detection, as well as high scalability 
through summarized data, sampling and filtering and special techniques like 
spectral analysis.  As implied above, the tools need to be interoperable with 
programming abstractions, so that problems in a loop in a library or 
dynamic scheduling of tasks can be translated into terms that the 
programmer can understand. 

Potential	Implications	of	Disruptive	Technologies	

Disruptive	Hardware	Models	of	Computation	

Many of the fundamental abstractions used in computing in general, and 
high-performance computing in particular, have evolved steadily since their 
introduction decades ago: 

• Fortran programming language (introduced in the 1950s) 
• C programming language (1973) 
• Sockets communications (1983) 
• File system in terms of files, directories, POSIX API (1988) 
• POSIX threads, locks, condition variables, etc. (1988) 
• MPI message passing API (1994) 
• OpenMP (1997) 

An important question is whether and to what degree these fundamental 
abstractions may be broken by new technologies, especially disruptive 
technologies.  The above abstractions have stood the test of time and will 
endure in HPC, given the long lifetimes of scientific codebases.  
Nevertheless, certain disruptive technologies on the horizon have the 
potential to challenge certain basic assumptions.  

Convergence	Between	Storage	and	Memory	

All existing computing systems make a strong distinction between memory 
and storage. Random-access memory is fast (in both bandwidth and 
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latency), it is byte addressable and randomly accessible by the processor, it 
has high cost-per-bit, and its contents are volatile. Storage is slow, in both 
bandwidth and latency, data is accessed through at I/O device in 512-byte 
(or larger) blocks, it has lower cost-per-bit, and the data is persistent.  

This (hardware) correspondence between persistence on the one hand and 
speed, addressability and granularity on the other is the basis for the 
different roles of memory and storage. Temporary data structures are held 
in memory, and manipulated using random accesses. Data that must be 
persistent and/or passed among programs is serialized to a file as a byte 
stream.  

Storage-class memory, including HPE’s Persistent Memory, has similar 
speed, addressability and cost as DRAM with the non-volatility of storage.  
In the context of HPC, such memory can reduce the cost of checkpointing or 
eliminate it entirely.  There is also work on persistent objects, e.g., NV-
Heaps [12], and further work is needed. 

Neuromorphic,	Resistive	and	Quantum	Computing	

The adoption of neuromorphic, resistive computing and/or quantum 
computing may have a dramatic effect on the system software and 
programming model.  It is currently unclear whether it will be sufficient to 
offload tasks, as on GPUs, or whether more dramatic changes will be 
needed. 
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5. HPC	Application	Requirements	
Scope	

Industrial and scientific applications are the raison d’etre of high-
performance computing. HPC systems must therefore be designed to meet 
the needs of the users, and they must anticipate future evolutionary and 
disruptive changes in these requirements.  This must be done while 
mitigating the negative impacts of the end of Moore’s law and vertical 
challenges such as energy efficiency, programmer productivity and 
resiliency. This section collects the main requirements of HPC users, 
including applications, numerical libraries, and algorithms.  The focus is on 
the impact of HPC requirements on HPC computing systems, rather than the 
applications themselves.  

This section will be extended during the second year of EuroLab-4-HPC, in 
cooperation with the EXDCI Project, as part of the update to the 2012 
PRACE Scientific Case [2]. 

Current	Research	Trends	

Need	for	More	Performance	

There is no doubt that all user communities see a continued demand for 
ever-more computational performance well beyond Exascale.  In addition, 
many users highlight increasing challenges related to data storage and 
processing. More quantitative details on future computational requirements 
are in the U.S Advanced Scientific Computing Advisory Committee (ASCAC) 
report [1] and the 2012 PRACE Scientific Case [2]. 

Adapting	Applications	for	Scalability	and	Heterogeneity	

HPC applications need to be adapted for Exascale systems and beyond.  It 
will be some time after the introduction of the first Exaflops machine before 
more than a handful of applications are able to take full advantage of such a 
machine.  The biggest issues relate to scalability (identifying and managing 
sufficient levels of parallelism), heterogeneity (including accelerators), and 
parallel I/O. Scientific codebases have very long lifetimes, on the order of 
decades, over which they have earned their users’ trust [7]. For this reason, 
HPC application developers are reluctant to rewrite their software, and are 
keen to follow an incremental path [8].  

There is strong interest in higher-level programming abstractions to provide 
independence and portability from the details of particular hardware 
implementations and execution environments, including varying degrees of 
parallelism, application-specific designs, heterogeneity, accelerators, and 
complex (deeper) memory hierarchies [9]. Compilers and runtime systems 
should perform complex transformations such as overlapping computations 
and communications [8], auto-tuning [9], scheduling and load balancing 
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(especially difficult with multi-scale multiphysics codes). New abstractions 
are needed to improve parallel I/O. Domain-Specific Languages (DSLs) help 
by separating domain science from the programming challenges [9]. Much 
more research is needed in these areas, but from the application point-of-
view, the main barriers to their adoption are lack of standardization or long-
term support in compilers and libraries [4], as well as difficulties in the 
interoperability of multiple programming models in large codebases. 
Regarding accelerators, there are currently too many incompatible 
programming interfaces, e.g. CUDA, OpenCL, OpenACC, and OpenMP 4.0, 
and consolidation on an open, vendor-neutral and widely used standard is 
needed [9].  

There are serious difficulties with performance analysis and debugging, and 
existing techniques based on printf, logging and trace visualization will soon 
be intractable. Existing debuggers are good for small problems, but more 
work is needed to (graphically) track variables to find out where the output 
first became incorrect, especially for bugs that are difficult to reproduce. 
Performance analysis tools require lightweight data collection using 
sampling, folding and other techniques, so as not to increase execution time 
or disturb application performance (leading to non-representative analysis). 
There is a need for both superficial on-the-fly analysis and in-depth AI and 
deep learning analytics. As compilers and runtime systems become more 
complex, there will be a growing gap between runtime behaviour and the 
changes in the application’s source code required to improve performance—
although this does not yet seem to be a significant problem. 

There is a concern that future systems will have worse performance stability 
and predictability, due to complex code transformations, dynamic adapting 
for energy and faults, dynamically changing clock speeds, and migrating 
work [7]. This is problematic when predictability is required, e.g., for 
applications such as weather forecasting and for making proposals for 
access to HPC resources (since proposals need an accurate prediction of 
application performance scalability).  

Need	for	Co-Design	

Application communities are keen to be involved in co-design activities, in 
order to ensure appropriate future system designs, with appropriate 
memory capacities, memory hierarchies, networks and topologies and 
storage systems well suited to a class of applications [9]. Users need early 
access to prototypes, in order to test algorithm performance and provide 
feedback to system designers [7]. As machines fail to follow Moore’s law 
and Dennard’s scaling, raw LINPACK performance is seen as non-
representative of real world performance (e.g. Tianhe-2 was reportedly 
switched off much of the time because it was not useful for real 
applications, despite having at the time the world’s highest LINPACK 
performance).  Long-term partnerships are needed between vendors, HPC 
centres, research institutes and universities, as is being done in the U.S. 
ExMatEx (extreme materials), CESAR (advanced reactors) and ExaCT 
(combustion in turbulence) co-design centres. 
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Extreme	Data	

A new paradigm for scientific discovery is emerging due to the exponentially 
increasing volumes of data generated by HPC simulations and collected 
from telescopes, colliders, and other scientific instruments or sensors [6].  
From the application point of view, the major problem is how to extract new 
knowledge or insights from the data [5][6]. Specific problems related to 
computing systems are managing data (streaming data processing, 
archiving, curation, metadata, provenance, distribution and access), data 
analytics (statistical streaming data analysis, machine learning on high-
dimensional data), data-intensive simulation (large-scale multi-physics and 
multi-scale simulations), data-driven inversion and assimilation (high-
dimensional Bayesian inference, e.g., Full Waveform Inversion for oil and 
gas), and statistics and stochastic methods (direct-inverse uncertainties and 
extreme event statistics) [3].  Users may wish to continue using a trusted 
(but inefficient) algorithm that has worked well on smaller data volumes 
[10]. 

Data movement is a major problem, including distributing data among 
scientists worldwide at acceptable cost and movement across infrastructure 
from the point of generation or collection. There is a need for in situ 
analytics and data reduction, with pre-processing, simulation, post-
processing and visualization executed on the same HPC cluster. This 
requires batch and interactive workloads to coexist and it needs  
interoperable file formats [8]. 

More details on the convergence of HPC and big data are given in Section 6. 

Interactivity	and	Usage	Models	

There are two broad categories of HPC usage. Capability computing refers 
to very large jobs that use (almost) the entire machine, e.g., brain 
simulation, or high-resolution turbulence model, and such a job must 
complete in the minimum time. Capacity (or throughput) computing refers 
to a large number of concurrent jobs, with a trade-off between minimising 
individual job execution time and maximising overall throughput.  Capacity 
computing currently uses perhaps a few thousand cores per job, and it is 
commonly used for large ensembles of moderate-scale computations, e.g., 
for weather or climate simulations (in order to understand the distribution 
of possible outcomes) and for design space exploration. 

There is increasing interest in “real time” and interactive supercomputing. 
High priority simulations are needed for extreme weather and mission-
critical jobs (e.g. at NASA). Interactive jobs are also needed, as described 
above, for in situ visualization, as well as for computational steering: 
changing parameters in a simulation model as it runs, and changing 
resolutions in certain places of importance.  Interactive and batch jobs 
should adapt to dynamic resource availability [9], which is an opportunity 
for new algorithms and programming models. 
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Finally, there is an opportunity to execute HPC workloads in the cloud, 
especially for SMEs and to support real time or high priority jobs.  There 
have been some pilots, that show problems with the cost model, data 
security [2] and privacy (e.g. for medical data), licencing problems and data 
transfer costs. 

Other	Application	Issues	

Bit Reproducibility: Many users are not prepared for the loss of bit 
reproducibility across similar runs on the same system. This is a 
significantly increasing problem due to heterogeneity and elastic numbers of 
cores, and it will increase the difficulty in validating algorithms. The 
situation is, however, similar to physical experiments, for which random 
experimental error is an old and known problem. 

Resiliency: is a vertical problem, and Application-Based Fault Tolerance 
(ABFT) techniques handle detectable, correctable and silent errors inside 
the application.  Some algorithms have better fault tolerance than others, 
for example iterative solvers, which are widely used in Computational Fluid 
Dynamics (CFD) and other areas tolerate errors (or approximations like 
analog computing) by executing more iterations.   

Energy Minimization: Since energy consumption is a major concern, 
users require better tools to measure the energy consumption.  More 
importantly, they also need to be incentivized to minimise their energy use. 

Other Application Issues: outside the scope of this roadmap (because 
they can be dealt with inside the application communities themselves) 
include: development of ultra-scalable solvers based on hierarchical 
algorithms [4], mesh generation [4], verification and validation and 
uncertainty quantification (VVUQ) [4], difficulty of coupling models at 
different scales, etc. [16], parallelization in time [4], methods to extract 
information/understanding from large quantities of scientific data [5], 
parallelization in time [4]. 
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6. Vertical	Challenges:	Green	ICT,	Energy	and	
Resiliency	

GreenICT	

GreenICT approaches include novel emergent business models such as 
where the heat produced by HPC computation can be used to provide heat 
for business/residential buildings. Currently AoTerra is offering a small all-
in-one data centre that feeds the produced heat into a buildings water 
circuit. Green ICT is the synergy of technological advancements and 
business models for application use-cases delivering cost effective low-
power solutions for real problems. 

Energy efficient virtual machines, software stacks and runtime libraries for 
native applications need to be researched and constructed. A combination of 
hardware (new cores, accelerators, memory/interconnect technology) and 
software techniques for energy and power management will need to be 
cooperatively deployed in order to deliver energy efficient solutions. It will 
be important to ensure that hardware and software techniques act as a 
single unified control system. Otherwise it is possible that there will be short 
time periods where software and hardware mechanisms will be in conflict, 
leading to increased energy consumption. Techniques need to be developed 
that enable software to automatically and optimally exploit heterogeneity in 
compute resources. 

Further, environmental impact of IT infrastructures is another import issue. 
A typical benchmark for making assumptions regarding the environmental 
impact is the eco-efficiency calculated by the economic value of a product 
compared to the external effects to the environment. In addition, GreenICT 
considers the life cycle assessment analysing the environmental impact of a 
product during its complete life cycle including the input resources (e.g. 
kWh and resources in kg) and the output as well as changes in the 
inventory (e.g. CO2 emissions). Generally it needs to be distinguished 
between two terms, the eco-efficiency (see above) and the eco-
effectiveness. While eco-efficiency describes an approach for reducing 
resources and pollutants as well as increasing the outcome, eco-
effectiveness is a strategy for producing zero environmental pollution and 
100 % recycling. 

For the HPC sector typical aspects in the scope of GreenICT are the power 
consumption of the IT infrastructure and additionally the power 
consumption for non-IT infrastructure such as cooling. Further, CO2 
emissions are influenced by HPC related infrastructure. In addition, when 
thinking of the complete life cycle of an IT infrastructure, the power 
consumption and CO2 emissions are not only relevant for maintenance but 
also for production and taking out of operation. 

Approaches for reducing the power consumption including aspects of CO2 
emissions were analysed in the European funded ECO2Clouds project [1]. In 
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addition, a resource-efficient cooling of IT infrastructure was evaluated in 
the European funded CoolEmAll project [2]. As part of the mechanism to 
access HPC resources, users need to be incentivised to reduce their energy 
consumption and/or environmental impact. 

Energy	

Non-volatile memories offer new potential to deliver energy savings. 
Combined hardware and software techniques are expected to be required. 
Further away on the horizon are the potential impacts of new technologies 
concerning how chips are fabricated and new circuit structures built from 
materials such as graphene. 

When thinking of power consumption, PUE (power usage effectiveness) and 
DCIE (data centre infrastructure efficiency) are of high importance. 

The PUE describes the complete amount of power delivered to a datacentre 
divided by the amount of power used by IT devices. In this scope it needs 
to be distinguished between IT devices such as server, hard drives, network 
devices and so forth and non-IT devices such as light, cooling and so forth. 
Ideally the optimal PUE is 1, which would mean that the total amount of 
power was used by the IT devices. 

The DCIE is the inverse PUE. For instance, a DCIE of 0,3 means that 30 % 
of the total amount of power delivered to a data centre is used by the IT 
devices.  

Both terms, PUE and DCIE, enable a benchmark of the delivered power. An 
optimal usage of delivered power is necessary in the HPC sector for 
reducing power consumption costs and taking care of the environment. 

Resiliency	

Preserving data consistency in case of faults is an important topic in the 
HPC area. Traditional methods for handling resiliency issues are reaching 
limits due to growing data amounts. For instance redundant devices and 
backups alone are not sufficient anymore. There is a strong need for 
exploring novel strategies and methods going beyond existing resiliency 
methodologies. 

We are now approaching the era of unreliable computing where it cannot be 
guaranteed that all computing resources within a full HPC system, a single 
node, or even in a single chip containing processing cores and/or memory 
can be relied upon to be fault free. This requires changes to the 
programming model, the runtime systems and the hardware used to solve 
HPC application problems. NVM offers a new technology that has the 
potential to support efficient low-cost techniques for performing 
checkpointing with a view to supporting transactional techniques/models for 
reliability. Computer systems wear out and reliability concerns mean that 
the localised on-chip temperature must be controlled and managed in order 
to maximise lifespan and to address the related problems of Dark Silicon. 
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The on-going shrinking of semiconductor feature sizes towards the physical 
limits of CMOS technology will further increase the fault rates of silicon 
devices. Effects like voltage fluctuation, cosmic radiation, wear out, thermal 
cycling, or variability may cause transient, intermittent, or permanent 
hardware faults leading to silent data corruption (SDC) or broken and 
unreachable subsystems. However, it is unclear, if and when future 
technologies, like photons, graphene, or nanotubes will replace silicon 
transistors and whether these technologies are more reliable.  

In massively-parallel HPC-Systems, which may consist of millions of 
heterogeneous computing devices, the increasing fault rates of silicon-based 
chips together with the growing number of CPUs, GPUs, caches, 
interconnects, or off-chip memories will reduce the system's Mean-Time-
Between-Failures (MTBF) to a few minutes or seconds.  

In order to cope with potential hardware faults, current server processors 
support basic hardware fault-tolerance mechanisms, like error correcting  
(ECC) or error detecting codes (EDC) for the memory and the cache 
hierarchy, the register files and the interconnection network. NVidia also 
offers ECC-memory for some of their GPUs. However, current hardware 
fault-tolerance mechanisms shipped with commodity server systems do not 
cover the complete hardware of the processor. Fault-tolerance mechanisms, 
which cover the complete device (e.g. high-availability or safety-critical 
lockstep execution) are expensive, because they require a duplication or 
triplication of the hardware. Therefore, hardware failures cannot be 
detected and masked in all cases by current server hardware, which 
requires that long-running HPC-applications must be able to cope with the 
effects of frequent hardware faults on the software level. However, not all 
layers of the HPC software stack (operating system, middleware, 
application, and programming model) already support fault-tolerant 
execution. 

For HPC-Systems software-based global checkpoint/restart mechanisms 
represent the state-of-the-art recovery technique. These checkpoint/restart 
mechanisms usually assume a fail-stop behaviour in case of a fault, which 
also means that faults leading to silent data corruptions, cannot be 
corrected. Furthermore, global software-based checkpoint mechanisms 
come with a significant runtime and storage overhead and provide reduced 
scalability when the number of computing devices is growing. 

Future disruptive hardware and software technologies may solve some of 
the reliability problems of current HPC-systems: 

• Non-volatile memory may be used for efficient hardware-supported 
checkpoint creation. 

• Magnetic-field-based resistive memories are immune to radiation-
induced soft-errors. 

• Neuromorphic Computing on GPUs and custom designs can tolerate 
transient and permanent faults. 

• Approximate computing may apply new algorithms to HPC 
applications that do not need the full precision. 
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Because hardware faults will manifest themselves much more frequently, 
hardware-based mechanisms such as ECC or Chipkill will not suffice to 
mitigate these errors. Therefore software-based reliability schemes will take 
an ever-increasing role in the effort to keep the MTTF rates reasonable. 
Another problem is that currently there is a separation between hardware-
based resilience solutions and software-based ones. In the future software-
based resilience techniques need to be co-designed together with hardware-
based resilience to provide a powerful, seamless, integrated solution. 

Furthermore new software-based fault-tolerance solutions should ideally 
leverage the future hardware developments such as 3D stacking, non-
volatile memory (NVM) and accelerators.  

Compiler-level	Resilience										

Future Exascale systems are expected to feature more heterogeneous 
computing substrates, incorporating CPUs, GPUs, vector processors, FPGAs 
and application specific neural or quantum accelerators. Each of these 
substrates have different resilience properties, for example vector 
instructions may be more vulnerable since they reside in the processor 
pipeline for longer periods; while FPGAs can be reconfigured to “heal” local 
permanent failures. During code generation, the compiler has to consider 
these resilience properties so as to maximize the overall system reliability.        

Reliability	at	Runtime	and	Programming	Models	

With increased fault rates, it is important that the error handling/recovery is 
transparent to the user. However, in order for that to happen, those errors 
should be intercepted by the runtime and channelled to transparent error 
handler recovery units at the runtime and application layers.  Current 
programming models such as MPI or OpenMP are not designed to be fault-
tolerant so upon receipt of an error message, the whole application could be 
terminated. Furthermore, it is not clear when and at what scale those 
standards will adopt fault tolerance extensions; MPI fault-tolerance 
proposals have been discussed for decades without much impact on the 
standard. Instead, we argue that the runtime should provide efficient 
wrappers to message-passing or task-based programming models so that 
an error detection signal could be delivered and handled by the message or 
task that experienced the error.  

Once the error message is delivered to the application, it must be handled 
efficiently as well. For this, the programming models should be elastic 
enough to provide the efficiency; if we adopt a stop-the-world type of 
synchronous error recovery, this will not be a viable solution for Exascale 
systems. Instead asynchronous recovery mechanisms that overlap 
computation with recovery are needed. For example, for task based 
programming models, we need the task schemes to be elastic enough so 
that only the tasks that were affected by the error are involved in the 
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recovery process while the rest of the tasks that do not depend on the error 
can make forward progress overlapping recovery with computation. 

Checkpointing schemes also need to be adapted to the higher fault rates 
expected in the future. If system-wide synchronous single-level 
checkpointing schemes are not scalable, according to predictions, they 
would dominate the execution time if deployed in future Exascale systems. 
In comparison, user-level asynchronous multi-level checkpointing schemes 
will be more apt for the future. Multi-level checkpointing schemes such as 
FTI already exist and they are very efficient thanks to splitting up what to 
checkpoint intelligently between the fast local memory and slower disks. 
Likewise, recent HPC systems have started to deploy asynchronous 
checkpointing leveraging burst buffers composed fast solid-state memory; 
designed to drain checkpoints from local memory and thus overlapping 
computation with check pointing. In the future where NVM main memory 
will co-exist with volatile DRAM, multi-level asynchronous checkpointing 
schemes will become even more relevant.     

In the future timeframe with increased error rates predicting failures before 
they manifest themselves will be increasingly more important. The runtime 
will need to monitor system state and based on fault-related symptoms, 
and predict that a possible error is imminent. The prediction mechanism 
should be efficient minimizing false positives, because predicting a failure 
where there is none reduces the performance. The same goes for false 
negatives where the system will not predict a fault, but an error will then 
happen. This will lead to costly fault recovery actions. If a fault is predicted, 
an correction action can be triggered employing, for example application-
based fault tolerance proactively, or the device that may potentially become 
faulty can be disabled.   

Application/Algorithm	Based	Fault	Tolerance	(ABFT)	

Compared to checkpoint-restart the advantage of ABFT mechanisms is the 
relatively lower overhead of fault-free execution. Checkpoint restart error-
recovery mechanisms are “backward” in the sense that the execution is 
rolled “back” upon detecting an error to the last checkpoint. In comparison, 
ABFT error-recovery mechanisms are “forward” in the sense that they do 
not need to go back to a former safe state in computation but rather they 
try to restore the lost data or correct it by using application/algorithm 
knowledge. An example is iterative linear algebra operations where the 
faulty segment of the matrix could be recomputed using existing partial 
results. The problem of ABFT is that it requires heavy modification of the 
application by an expert to incorporate the error recovery code. This high 
cost was in one sense limiting the adoption of ABFT. However, it is foreseen 
that relatively fewer applications/algorithms will scale to Exascale and 
therefore this might justify allocating more resources for these applications 
that do scale. In this scenario, the perceived high development costs of 
ABFT could be tolerable; and indeed ABFT might become a more attractive 
alternative.     
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Certain future NVM memories exhibit slower write speeds compared to 
reads; additionally they will likely suffer from write endurance: i.e. the 
memory cell will start to fail if the writes exceed a certain number. A likely 
research topic at the algorithm and application level is then to minimize the 
number of writes to degrade the cell as little as possible; here ideas similar 
to communication-avoiding algorithms could be utilized to maximize 
lifetime. 
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7. Convergence	of	HPC,	with	IoT	and	the	Cloud	
Convergence	of	HPC	and	Cloud	Computing	

High-performance computing refers to technologies that enable achieving a 
high-level computational capacity as compared to a general-purpose 
computer [1]. High-performance computing in recent decades has been 
widely adopted for both commercial and research applications including but 
not limited to high-frequency trading, genomics, weather prediction, oil 
exploration. Since inception of high-performance computing, these 
applications primarily relied on simulation as a third paradigm for scientific 
discovery together with empirical and theoretical science.  

The technological backbone for simulation has been high-performance 
computing platforms (also known as supercomputers) which are specialized 
computing instruments to run simulation at maximum speed with lesser 
regards to cost. Historically these platforms were designed with specialized 
circuitry and architecture ground up with maximum performance being the 
only goal. While in the extreme such platforms can be domain-specific [2], 
supercomputers have been historically programmable to enable their use for 
a broad spectrum of numerically-intensive computation. To benefit from the 
economies of scale, supercomputers have been increasingly relying on 
commodity components starting from microprocessors in the eighties and 
nineties, to entire volume servers with only specialized interconnects [3] 
taking the place of fully custom-designed platforms [4]. 

In the past decade, there have been two trends that are changing the 
landscape for high-performance computing and supercomputers. The first 
trend is the emergence of data analytics as the fourth paradigm [5] 
complementing simulation in scientific discovery. While simulation still 
remains as a major pillar for science, there are massive volumes of 
scientific data that are now gathered by instruments, sensors augmenting 
data from simulation available for analysis. The Large Hadron Collider and 
the Square Kilometre Array are just two examples of scientific experiments 
that generate in the order of petabytes of data a day. This recent trend has 
led to the emergence of data science and data-centric analytics as a 
significant enabler not just for science but also for humanities.  

The second trend is the emergence of cloud computing and warehouse-
scale computers (also known as data centres) [8]. Today, the backbone of 
IT and the “clouds” are data centres that are utility-scale infrastructure. 
Datacentres consist of low-cost volume processing, networking, and storage 
servers aiming at cost-effective data manipulation at unprecedented scales. 
Datacentre owners prioritize capital and operating costs (often measured in 
performance per watt) over ultimate performance. Typical high-end 
datacentres draw around 20 MW, occupy an area equivalent to 17 times a 
football field and incur a 3 billion Euros in investment. While datacentres are 
primarily designed for commercial use, the scale at which they host and 
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manipulate (e.g., personal, business) data has led to fundamental 
breakthroughs in data analytics. 

Massive	Data	Analytics	

We are witnessing a second revolution in IT, at the centre of which is data. 
The emergence of e-commerce and massive data analytics for commercial 
use in search engines, social networks and online shopping and 
advertisement has led to wide-spread use of massive data analytics (in the 
order of Exabytes) for consumers. Data now also lies at the core of the 
supply-chain for both products and services in modern economies. 
Collecting user input (e.g., text search) and documents online not only has 
led to ground-breaking advances in language translation but is also in use 
by investment banks mining blogs to identify financial trends. The IBM 
Watson experiment is a major milestone in both natural language 
processing and decision making to showcase a question answering system 
based on advanced data analytics that won a quiz show against human 
players.  

The scientific community has long relied on generating (through simulation) 
or recording massive amounts of data to be analysed through high-
performance computing tools on supercomputers. Examples include 
meteorology, genomics, connectomics (connectomes: comprehensive maps 
of connections within an organism's nervous system), complex physics 
simulations, and biological and environmental research. The proliferation of 
data analytics for commercial use on the internet, however, is paving the 
way for technologies to collect, manage and mine data in a distributed 
manner at an unprecedented scale even beyond conventional 
supercomputing applications.  

Sophisticated analytic tools beyond indexing and rudimentary statistics 
(e.g., relational and semantic interpretation of underlying phenomena) over 
this vast repository of data will not only serve as future frontiers for 
knowledge discovery in the commercial world but also form a pillar for 
scientific discovery [7]. The latter is an area where commercial and 
scientific applications naturally overlap, and high-performance computing 
for scientific discovery will highly benefit from the momentum in e-
commerce. 

There are a myriad of challenges facing massive data analytics including 
management of highly distributed data sources, and tracking of data 
provenance, data validation, mitigating sampling bias and heterogeneity, 
data format diversity and integrity, integration, security, sharing, 
visualization, and massively parallel and distributed algorithms for 
incremental and/or real-time analysis. 

With respect to algorithmic requirements and diversity, there are a number 
of basic operations that serve as the foundation for computational tasks in 
massive data analytics (often referred to as “dwarfs” [6] or “giants” [7]). 
They include but are not limited to: basic statistics, generalized n-body 
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problems, graph analytics, linear algebra, generalized optimization, 
computing integrals and data alignment. Besides classical algorithmic 
complexity, these basic operations all face a number of key challenges when 
applied to massive data related to streaming data models, approximation 
and sampling, high-dimensionality in data, skew in data partitioning, and 
sparseness in data structures. These challenges not only must be handled 
at the algorithmic level, but should also be put in perspective given 
projections for the advancement in processing, communication and storage 
technologies in platforms. 

Many important emerging classes of massive data analytics also have real-
time requirements. In the banking/financial markets, systems process large 
amounts of real-time stock information in order to detect time-dependent 
patterns, automatically triggering operations in a very specific and tight 
timeframe when some pre-defined patterns occur. Automated algorithmic 
trading programs now buy and sell millions of dollars of shares time-sliced 
into orders separated by 1ms. Reducing the latency by 1ms can be worth up 
to $100 million a year to a leading trading house. The aim is to cut 
microseconds off the latency in which these systems can reach to 
momentary variations in share prices [21].  

Warehouse-Scale	Computers	

Large-scale internet services and cloud computing are now fuelled by large 
datacentres which are a warehouse full of computers. These facilities are 
fundamentally different from traditional supercomputers and server farms in 
their design, operation and software structures and primarily target 
delivering a negotiated level of internet service performance at minimal 
cost. Their design is also holistic because large portions of their software 
and hardware resources must work in tandem to support these services [8].  

High-performance computing platforms are also converging with warehouse 
scale computers primarily due to the growth rate in cloud computing and 
server volume in the past decade. James Hamilton, VP and Distinguished 
Engineer at Amazon and the architect of their datacentres commented on 
the growth of Amazon Web Services (AWS) stating in 2014 that “every day 
AWS adds enough new server capacity to support Amazon’s global 
infrastructure when it was a $7B annual revenue enterprise (in 2004).”  

Silicon technology trends such as the end of Dennard Scaling [10] and the 
slowdown and the projected end of density scaling [11] are pushing 
computing towards a new era of platform design tokened ISA: (1) 
technologies for tighter Integration of components (from algorithms to 
infrastructure), (2) technologies for Specialization (to accelerate critical 
services), and (3) technologies to enable novel computation paradigms for 
approximation. These trends apply to all market segments for digital 
platforms and reinforce the emergence and convergence of volume servers 
in warehouse-scale computers as the building block for high-performance 
computing platforms. 
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With modern high-performance computing platforms being increasingly built 
using volume servers, there are a number of salient features that are 
shared among warehouse-scale computers and modern high-performance 
computing platforms including dynamic resource allocation and 
management, high utilization, parallelization and acceleration, robustness 
and infrastructure costs. These shared concerns will serve as incentive for 
the convergence of the platforms. 

There are also a number of ways traditional high-performance computing 
ecosystems differ from modern warehouse-scale computers [12]. With 
performance being a key criterion, there are a number of challenges facing 
high-performance computing on warehouse-scale computers. These include 
but are not limited to efficient virtualization, adverse network topologies 
and fabrics in cloud platforms, low memory and storage bandwidth in 
volume servers, multi-tenancy in cloud environments, and open-source 
deep software stacks as compared to traditional supercomputer custom 
stacks. As such, high-performance computing customers must adapt to co-
exist with cloud services given these challenges, while warehouse-scale 
computer operators must innovate technologies to support the workload 
and platform at the intersection of commercial and scientific computing.  

Embedded	Systems	and	IoT	Impacts	

Internet of Things (IoT) is also having an impact on traditional high-
performance computing because of a number of industrial applications that 
have historically adopted embedded technologies but can benefit from 
higher performance. Sensors and cyber-physical systems are prominent 
examples of embedded technologies that require managing and analysing 
massive amounts of data. In these applications, the embedded systems 
must collaborate hand-in-hand to filter and analyse data locally due to the 
massive scale of the data generated prior to consulting with a cloud service 
for high quality decisions. 

In the Large Hadron Collider (LHC) in CERN, beam collisions occur every 
25ns, which produces up to 40 million events per second. All these events 
are pipelined with the objective of distinguishing between interesting and 
non-interesting events to reduce the number of events to be processed to a 
few hundreds [18].  

Bridges are monitored in real-time [19] with information collected from 
more than 10,000 sensors processed every 8ms, managing responses to 
natural disasters, maintaining bridge structure, and estimating the extent of 
structural fatigue.  

In intelligent transportation systems, complex event processing systems are 
being developed to allow for fuel consumption reduction of railway systems, 
managing throttle positions, elaborating big amounts of data and sensor 
information, such as train horsepower, weight, prevailing wind, weather, 
traffic, etc. [20]. 
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The automotive and avionics domains are continually demanding increasing 
levels of intelligence, efficiency and environmental performance, whilst 
fulfilling safety requirements. High performance brings the opportunity to 
fulfil these fundamental drivers, to develop systems that adapt more quickly 
to changing environments, opening the door to highly automated and 
autonomous transport, capable of eliminating human error in control, 
guidance and navigation and so leading to more safety [16, 17].  
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Abstract	

This report is part of the roadmapping effort within the EC CSA Eurolab-4-
HPC. The roadmap itself targets a long-term roadmap (2022-2030) for 
High-Performance Computing (HPC) and it was decided, because of the 
speculative nature, to start with an assessment of future computing 
technologies that could influence HPC hardware and software. 

The report covers the following technologies: CMOS scaling, die stacking 
and 3D chip technologies, Non-volatile Memory (NVM) technologies, 
Photonics, Resistive Computing, Neuromorphic Computing, Quantum 
Computing, Nanotubes, Graphene and Diamond Transistors. 

From the assessment of these technologies we derive some potential long-
term impacts of Disruptive Technologies for HPC hardware. 

The report is the draft (August 2016) of an on-going assessment process 
and will be extended in the future. 
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1. Introduction	
Roadmapping beyond the upcoming Exascale machines (2022-2030) is 
extremely speculative. The basic idea of Eurolab-4-HPC roadmap is 
therefore to assess potentially disruptive technologies and summarize its 
impacts on HPC hardware as IF .. THEN .. statements, i.e. IF disruptive 
technology will be available THEN potential impact on hardware could be. 

To sort the different technologies we define Types of Innovation adapted to 
HPC as: 

Sustaining:  An innovation that does not principally affect existing HPC. An 
innovation that improves HPC hardware in ways that were generally 
expected. 

Discontinuous: An innovation that is unexpected, but nevertheless does 
not affect existing HPC. 

Disruptive: An innovation that creates a new line of HPC hardware by 
applying a different set of values, which ultimately (and unexpectedly) 
overtakes existing HPC techniques. 

We survey the currents state of research and development and its potential 
for the future of the following hardware technologies:  

• CMOS scaling 
• Die stacking and 3D chip technologies 
• Non-volatile Memory (NVM) technologies 
• Photonics 
• Resistive Computing 
• Neuromorphic Computing 
• Quantum Computing 
• Nanotubes 
• Graphene and  
• Diamond Transistors 

We categorize the technologies as: 

o Sustaining technologies: CMOS scaling and Die stacking, see section 2 
o Disruptive technologies that potentially create a new line of HPC 

hardware: NVM and Photonics, see section 3 
o Disruptive technologies that potentially create alternative ways of 

computing: Resistive, Neuromorphic, and Quantum Computing, see 
section 4 

o Disruptive technologies that potentially replace CMOS for processor 
logic: Nanotube, Graphene, and Diamond technologies, see section 5. 

We summarize potential long-term impacts of Disruptive Technologies on 
HPC hardware in section 2 of the preliminary roadmap. Such impacts could 
concern the processor logic, the memory hierarchy, and potential hardware 
accelerators. 



 

46 

 

  



 

47 

 

2. Sustaining	Technology	(improving	HPC	HW	in	ways	that	are	
generally	expected)	

	Continuous	CMOS	scaling	

Current (2016) high-performance multiprocessors feature 14 to 16nm 
technology. In April 2015, TSMC announced that the 10nm production 
would begin at the end of 2016. On 23 May 2015, Samsung Electronics 
showed off a 300mm wafer based on 10nm FinFET chips. Intel delayed their 
10nm manufactured Cannonlake processor until the second half of 2017 [5] 
due to problems with the manufacturing process with 10nm technology. 
Intel’s difficulties and changed plans show the continuing challenges with 
keeping pace with Moore’s law. 

Continuing Moore’s Law and managing power and performance tradeoffs 
remain as the key drivers of the International Technology Roadmap For 
Semiconductors 2015 Edition (ITRS 2015) [1] grand challenges. Silicon 
scales according to the ITRS 2013 Roadmap until around 7 to 8nm in 2025 
and 6 to 5nm in 2028 for MPUs or ASICs. DRAM half pitch (i.e., half the 
distance between identical features in an array) is projected to scale down 
to 10nm in 2025 and 7.7nm in 2028 allowing up to 32 GBits per chip.  
However, DRAM scaling below 20 nm is very challenging [1]. This results in 
an increasing cost of transistors at nodes below 10nm: the cost per 
transistor may increase from one technology node to the next [2].  

The ITRS roadmap does not guarantee that silicon-based CMOS will extend 
that far because transistors with a gate length of 6 nm or smaller are 
significantly affected by quantum tunneling [3]. As a result of the limited 
further CMOS scaling the ITRS redirected their focus [4]. 

One trend to improve the density on chips will be 3D integration. A 
revolutionary DRAM/SRAM replacement will be needed [1]. As a result, non-
silicon extensions of CMOS, using III-V materials or Carbon 
nanotube/nanowires, as well as non-CMOS platforms, including molecular 
electronics, spin-based computing, and single-electron devices, have been 
proposed [3]. 

Impact on hardware: “Scaling von Neumann systems leads to steadily 
increasing power consumption, high voltage density and high clock 
frequency leading away from the operating points of a biological brain” [3]. 

For a higher integration density, new materials and processes will be 
necessary. Since there is a lack of knowledge of the fabrication process of 
such new materials, the reliability might be lower, which may result in the 
need of integrated fault-tolerance mechanisms [1]. 

References	
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	Die	Stacking	and	3D-Chip		

Die Stacking and 3D chip integration denote the concept of stacking 
integrated circuits (e.g. processors and memories) vertically in multiple 
layers. 3D packaging assembles vertically stacked dies in a package, e.g., 
system-in-package (SIP) and package-on-package (POP).  

Die stacking can be achieved in a stacking approach by connecting 
separately manufactured wafers or dies vertically either via wafer-to-wafer, 
die-to-wafer, or even die-to-die integration. The mechanical and electrical 
contacts are realized either by wire bonding as in SIP and POP devices or 
microbumps. SIP is sometimes listed as a 3D stacking technology, although 
it should be better denoted as 2.5 D technology. 

Another approach is arranging dies (called chiplets) horizontally connected 
with Interposers onto silicon substrate. The advantages of 3D technology 
based on Interposer are numerous: Firstly, short communication distance 
between dies, thus reducing communication load and then reducing 
communication power consumption. Secondly, the possibility of stacking 
dies from various heterogeneous technologies, like stacking memory on top 
of logic like flash, nonvolatile memories, or even photonic devices, in order 
to benefit of the best technology where it best fits. And thirdly, an improved 
system yield and cost by partitioning the system in a divide & conquer 
approach: multiple similar dies are fabricated, tested and sorted before the 
final 3D assembly, instead of fabricating ultra large dies with much reduced 
yield. 

Die stacking can also be achieved by stacking active layers vertically on a 
single wafer in a monolithic approach. Such kind of 3D chip integration does 
not use off-chip signaling for communication but it applies direct signaling 
between layers. Contacts are implemented in true 3D technology without 
mechanical contacts using inductive or capacitive effects or by vertical 
conductive channels through the chip substrate, so-called through-silicon-
vias (TSV).  

Since the TSV technology offers the densest connectivity, it is currently the 
most promising and favored 3D stacking technology for future high-
performance microprocessors. Besides, there is also monolithic 3D 
technology, where layers are grown on top of the other. This is also more 
compact, and allows smaller grain integration between layers. 

Current state: The monolithic approach of die stacking is already used in 
3D flash memories from Samsung and also for smart sensors. Commercial 
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prototypes of 3D technology date back until 2004 when Tezzaron released a 
3D IC microcontroller [1]. Intel evaluated chip stacking for a Pentium4 
already in 2006 [2]. Recent multicore designs using Tezzaron’s technology 
include the 64 core 3D-MAPS (3D MAssively Parallel processor with Stacked 
memory) research prototype from 2012 [3] [4] and the Centip3De with 64 
ARM Cortex-M3 Cores also from 2012 [5]. Fabs are able to handle 3D 
packages (e.g. [6]). In 2011 IBM announced 3D chip production process 
[7]. Intel announced "3D XPoint" memory in 2015 (assumed to be 10x the 
capacity of DRAM and 1000x faster than NAND flash [8]). Both NVIDIA and 
AMD already exploit the high-bandwidth and low latencies given by 3D 
stacked memories for a high-dense memory processor, called high-
bandwidth memory (HBM). AMD’s GPUs based on the Fiji architecture with 
HBM are available since 2015, and NVIDIA released Pascal-based GPUs in 
2016 [17]. A direction towards future 3D stacking of memory dies on 
processor dies is the Hybrid Memory Cube from Micron. It stacks multiple 
DRAM dies and a separate layer for a controller which is vertically linked 
with the DRAM dies. This interposer approach is used in high end FPGAs to 
reduce cost. 

Perspective: 3D NAND Flash may be prevailing. 3D flash memories may 
enable SSDs with up to 10 TB of capacity in the short term [9]. In 2007, 
earliest potential was seen in memory stacks for mobile applications [10]. It 
is to expect that 3D chip technology will widely enter the market for 
mainstream architectures within the next 5 years. Representative for this 
current development are, e.g., Intel’s Xeon Phi Knights Landing processors 
which will be equipped with package-integrated DRAMs in 2016 as a result 
of their cooperation with Micron.  

It is also to be expected that in a long-term perspective the technology will 
be expanded progressively from 3D packaging technologies towards real 3D 
chip stacking and possibly towards 3D ICs in 3D packages in order to profit 
from all the benefits such technology will offer in particular for HPC 
architectures.  

The main challenge in establishing this 3D chip stacking technology is 
gaining control of the thermal problems that have to be overcome to realize 
reliably very dense 3D interconnections. This requires the availability of 
appropriate design tools, which are explicitly supporting 3D layouts. Both 
topics represent an important issue for research in the next 10 to 15 years. 

Impact on hardware: 3D stacking has a series of beneficial impacts on 
the hardware in general and on the possibilities how to design future 
processor-memory-architectures in particular. Wafers can be partitioned 
into smaller dies because comparatively long horizontally running links are 
relocated to the third dimension and thus enable smaller form factors. 3D 
stacking also enables heterogeneity, by integrating layers, manufactured in 
different processes, e.g., different memory technologies, like SRAM, DRAM, 
Spin-transfer-torque RAM (STT-RAM) and also memristor technologies, 
which would be incompatible among each other in monolithic circuits. Due 
to short connection wires, reduction of power consumption is to be 
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expected. Simultaneously, a high communication bandwidth between layers 
connected with TSVs can be expected leading to particularly high processor-
to-memory bandwidth. 

The last-level caches will probably be the first to be affected by 3D stacking 
technologies, which will increase bandwidth and reduce latencies by a large 
cache memory stacked on top of logic circuitry. In a further step it is 
consequent to expand 3D chip integration also to main memory in order to 
make a strong contribution in reducing decisively the current memory wall 
which is one of the strongest obstructions in getting more performance in 
HPC systems. Furthermore, possibly between 2026 and 2030, 3D arithmetic 
units will undergo the same changes ending up in complete 3D many-core 
microprocessors, which are optimized in power consumption due to reduced 
wire lengths. 

3D stacking will also be used to scale flash memories, because 2D NAND 
flash technology does not scale beyond 16 nm [9, 12]. 3D stacking can also 
be used for image sensors. A technology was presented by Olympus in 
which more than 4 million microbumps have been used for stacking a 16 
megapixel array sensor directly on top of a circuit implementing a global 
shutter control logic. Sony used TSV technology to combine image sensors 
directly with column-parallel analogue-digital-converters and logic circuits 
[13,14]. 
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3. Disruptive	Technology	in	Hardware/VLSI	(innovation	that	creates	a	
new	line	of	HPC	hardware	superseding	existing	HPC	techniques)	

 

Non-volatile	Memory	(NVM)	Technologies 

Currently NAND Flash is the most common NVM technology, which finds its 
usages on SSDs, memory cards and memory sticks. NAND flash uses 
floating-gate transistors for storing single bits. This technology is facing a 
big challenge, because scaling down decreases the endurance and 
performance significantly [25]. Hence the importance of other NVM 
technologies increases. 

Resistive memories, i.e. memristors, are an emerging class of non-volatile 
memory technology. The memristors electrical resistance is not constant 
but depends on the history of current that had previously flowed through 
the device. The device remembers its history—the so-called non-volatility 
property: when the electric power supply is turned off, the memristor 
remembers its most recent resistance until it is turned on again [1].  

Among the most prominent memristor candidates and close to 
commercialization are phase change memory (PCM) [2, 3, 4, 5, 6], metal 
oxide resistive random access memory (RRAM or ReRAM) [7, 8], and 
conductive bridge random access memory (CBRAM) [9].  

PCM can be integrated in the CMOS process and the read/write latency is 
only by tens of nanoseconds slower than DRAM whose latency is roughly 
around 100ns. The write endurance is hundreds of millions of writes per cell 
at current processes. This is why PCM is currently positioned only as a Flash 
replacement. [21]. RRAM offers a simple cell structure which enables 
reduced processing costs. The endurance can be more than 50 million 
cycles and the switching energy is very low [22]. RRAM can deliver 100x 
lower read latency and 20x faster write performance compared to NAND 
Flash [23]. CBRAM can also write with relatively low and with high speed. 
The read/write latencies are close to DRAM.  

Spintronics is the technology of manipulating the spin state of electrons. 
Instead of using the electrons charge, spin states can be utilized as a 
substitute in logical circuits or in traditional memory technologies like SRAM. 
An STT-RAM [10] memory cell stores data in a magnetic tunnel junction 
(MTJ). Each MTJ is composed of two ferromagnetic layers (free and 
reference layers) and one tunnel barrier layer (MgO). If the magnetization 
direction of the magnetic fix reference layer and the switchable free layer is 
anti-parallel, resp. parallel, a high, resp. a low, resistance is adjusted, 
representing a digital "0" or "1".  Recently it was reported that by adjusting 
intermediate magnetization angles in the free layer 16 different states can 
be stored in one physical cell, enabling to realize multi-cell storages in MTJ 
technology [11].  
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The read latency and read energy of STT-RAM is expected to be comparable 
to that of SRAM. The expected 3x higher density and 7x less leakage power 
consumption in the STT-RAM makes it suitable for replacing SRAMs to build 
large NVMs. However, a write operation in an STT-RAM memory consumes 
8x more energy and exhibits a 6x longer latency than a SRAM. Therefore, 
minimizing the impact of inefficient writes is critical for successful 
applications of STT-RAM [12]. 

NRAM, short for Nano Ram is a proprietary technology of Nantero. The ram 
uses a fabric of carbon nanotubes (CNT) for saving bits. The resistive state 
of the CNT fabric determines, whether a one or a zero is saved in a memory 
cell. The resistance depends on if the CNTs are in contact with each other. 
With the help of a small voltage, the CNTs can be brought into contact or be 
separated. Reading out a bit means to measure the resistance. Nantero 
claims that their technology features the same read- and write latencies as 
DRAM, has a high endurance and reliability even in high temperature 
environments and is low power with essentially zero power consumption in 
standby mode.  Furthermore NRAM is compatible with existing CMOS fabs 
without needing any new tools or processes, and it is scalable even to below 
5nm [26]. 

Current state: IBM announced MLC-PCM technology replacing flash. Intel 
and Micron announced the new Breakthrough Memory 3D XPoint 
Technology [14] as revolutionary flash replacement. It is expected that the 
X-Point technology could become the dominating technology as an 
alternative to RAM devices offering in addition NVM property in the next ten 
years.  

IBM also developed a neuromorphic core with a 64-K-PCM-cell as Synaptic-
Array (256 Axone x 256 Dendrite) to implement SNNs (Spiking Neural 
Networks) [19].  

Adesto is currently offering CBRAM technology in their serial memory chips 
[24]. 

The circuit-level performance, energy, and area model of the emerging non-
volatile memory simulator NVSim [20] allows the investigation of 
architectural structures for future NVM based high-performance computers. 

Perspective: It is foreseeable, that other NVM technologies will supersede 
current flash memory. PCM for instance might be 1000 times faster and 
1000 times more resilient. Some NVM technologies have been considered as 
a feasible replacement for SRAM [15, 16, 17]. Studies suggest that 
replacing SRAM with STT-RAM could save 60% of LLC energy with less than 
2% performance degradation [15]. 

It is unclear when most of the new technologies may be mature enough and 
which of them will prevail. But this is not of importance, because all have 
the same goal, namely to revolutionize the current storage technology. 
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Impact on hardware: Memristors will deliver non-volatile memory which 
can be used potentially in addition to DRAM, or as a complete replacement.  

The latter will lead to a new Storage-Class Memory (SCM), i.e., a 
technology that blurs the distinction between memory and storage by 
enabling new data access modes and protocols that serve both ‘memory’ 
and ‘storage’. These new SCM types of non-volatile memory could be 
integrated on-chip with the microprocessor cores as they use CMOS-
compatible sets of materials and require different device fabrication 
techniques than flash. In a VLSI post-processing step they can be 
integrated on top of the last metal layer (see the note on Back-end of line 
service in section Resistive Computing). One of the challenges for the next 
decade is the provision of appropriate interfacing circuits between the SCMs 
and the microprocessor cores. The benefits of memristor devices in 
integration density, energy consumption and access times may not get lost 
by costly interface circuitry. This holds in particular for exploiting the multi-
level cell storage capability of NVMs for future systems, e.g., for big data 
applications. Moreover, memristors offer orders of magnitude faster 
read/write accesses and also much higher endurance. They are resistive 
switching memory technologies, and thus rely on different physics than that 
of storing charge on a capacitor as is the case for SRAM, DRAM and Flash 
[18].  

Spin-transfer torque magnetic random access memory (STT-RAM) devices 
are also an important class of non-volatile memory that primarily targets 
the replacement of DRAM, e.g., in Last-Level Caches (LLC). However, the 
asymmetric read/write energy and latency of NVM technologies introduces 
new challenges in designing memory hierarchies. Spintronic allows 
integration of logic and storage at lower power consumption. 

Also new hybrid PCM / Flash SSD chips could emerge with a processor-
internal last-level cache (STT-RAM), main processor memory (PCRAM), and 
storage class memory (ReRAM) [18]. 
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Photonics		

The general idea is to replace electrons with photons in intra-chip 
connections, inter-chip, memory and logic.  First, interconnects between 
devices and chips are built from optical fiber, which allows higher 
throughput and possibly lower latency (head-flit latency). Such connections 
already exist (e. g. Thunderbolt or optical PCI Express by Intel). Optical 
inter-chip signals are then expected to be conveyed also on different 
mediums to facilitate integrability with CMOS process, e.g., polycarbonate 
as in some IBM research prototypes and commercial solutions. 

The next step is to use optical interconnects to connect chips on the same 
circuit board. For future devices, also intra-chip connections may be optical. 
In general, the trend is going towards photonics integrated with electronics 
and closer to the chips and cores. However, conversion from photons to 
electrons is costly and for this reason there are currently strong efforts in 
improving the crucial physical modules of an integrated optical channel (e.g. 
modulators, photodetectors and thermally stable and efficiently integrated 
laser sources). Therefore, overall improvement in the effective adoption of 
photonics links closer and closer to the cores is to be expected.  

On another direction, to eliminate the electrical-optical conversion 
overhead, research tries to build chips which completely are based on 
photonics. Silicon photonics describes the attempt to integrate photonics in 
CMOS-like production [1]. 

Optical or photonic computing uses photons produced by lasers or diodes 
for computation. Most research projects focus on replacing current 
computer components with optical equivalents, resulting in an optical digital 
computer system processing binary data. This approach appears to offer the 
best short-term prospects for commercial optical computing, since optical 
components could be integrated into traditional computers to produce an 
optical-electronic hybrid [2]. This approach is currently far from general but 
it is however suitable for some specific application domains, e.g., extremely 
energy-efficient Fourier-based computation proposed in the Optalysys 
project (http://optalysys.com) [5]. 
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Current State: Optical fiber connections between devices exist.  Currently, 
optical PCI Express connections allow high bandwidth and high speed over 
long distances (up to around 80m).  Dedicated units for conversion between 
optical and electronic signals are required. Some integrated photonics 
solutions exist and are mainly aimed at replacing point-to-point electric 
wires (e.g. IBM HPC systems). 

Perspective: Inter-chip connections on a single circuit board will become 
available soon.  This requires silicon photonics, which allow the integration 
of photonics in a CMOS-like manufacturing process.  Silicon photonics 
implement lasers, detectors, and waveguides on-chip with silicon only [3]. 

Research is working on optical intra-chip and inter-chip connections, with 
prototypes being already available.  In this direction researchers have 
already identified the importance of a vertical design space exploration and 
design of a computer system endowed with integrated photonics. This can 
be combined with 3D technologies, replacing an active silicon interposer by 
a photonic interposer. Further challenges will arise from the evidence in 
current research proposals and prototypes that lower-layer design choices 
(e.g. physical layer, topologies, access strategies, sharing of resources), can 
have a significant impact in higher layers of the design (e.g. NoC-wise and 
up to memory coherence and programming model implications) and vice 
versa. This is mainly due to the scarce experience in using photonics 
technology for serving computing needs (close to processing cores 
requirements) and, most of all, due to the intrinsic end-to-end nature of an 
efficient optical channel, which is completely opposed to the well-
established and mature knowledge of “store-and-forward” electronic 
communication paradigm. Then, intrinsic low-latency properties of optical 
interconnection (on-chip and inter-chip) could imply a re-definition of what 
is local in a future computing system, especially at high-scale like in a 
perspective HPC, together with the programming paradigms able to take 
advantage of the induced new optimal organization of the overall machine. 

Further research targets photonic non-volatile memory [4]. This could 
reduce latencies of memory accesses by eliminating costly optoelectronic 
conversions. A revolution of micro architecture design is possible, since 
latencies and differences in speed between CPU and main memory in fully 
optical chips will not exist anymore. 

There are disagreements between researchers about the future capabilities 
of optical computers: Will they be able to compete with semiconductor-
based electronic computers on speed, power consumption, cost, and size? 
For optical logic to be competitive beyond a few niche applications, major 
breakthroughs in non-linear optical device technology would be required, or 
perhaps a change in the nature of computing itself [2]. 

The English company Optalysys, however, is of different opinion and 
announces that “Optalysys’s initial products will launch in 2017 and are 
expected to enable existing computers to achieve HPC-levels of 
performance up to an equivalent processing rate of 9 Petaflops – 
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comparable to the 5th fastest computer in the world today.  Following that 
we plan to pursue the design of larger systems capable of achieving 
multiple Exaflops by 2020” [5]. 

Impact on hardware: With both memory and connections becoming 
faster, 3rd level caches in Von Neumann architectures may become 
obsolete. Lots of main memory could be accessed with small latencies.  
Possibly, if the whole microarchitecture is implemented on silicon photonics, 
computational units and memory could work with the same speed.  The 
elimination of the von-Neumann bottleneck promises completely new and 
different architectures. 
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4. Disruptive	Technology	(alternative	ways	of	computing)	

	Resistive	Computing	

Apart from using memristors as non-volatile memory, there are several 
other ways to use memristors in computing [1, 2]. Using memristors as 
memristive synapses in neuromorphic computing [2, 3, 4] and using 
memristors in quantum computing [2] are discussed in separate sections. In 
this section, resistive computing is discussed. 

In resistive computing, logic circuits are built by memristors [5]. Memristive 
gates have a lower leakage power, but switching is slower than in CMOS 
gates [2]. However, the integration of memory into logic allows to 
reprogram the logic, providing low power reconfigurable components [12] 
and can reduce energy and area constraints in principle due to the 
possibility of computing and storing in the same device (computing in 
memory).  Memristors can also be arranged in parallel networks to enable 
massively parallel computing [13]. 

Resistive computing is one of the emerging and promising computing 
paradigms [5,6,7]. It takes the data-centric computing concept much 
further by interweaving the processing units and the memory in the same 
physical location using non-volatile technology, therefore significantly 
reducing not only the power consumption but also the memory bottleneck. 
Resistive devices such as memristors have been shown to be able to 
perform both storage and logic functions [5,8,9,10,11].  

Resistive computing provides a huge potential as compared with the current 
state-of the art: 

o It significantly reduces the memory bottleneck as it interweaves the 
storage, computing units and the communication [5,6,7]. 

o It features low power leakage [2].  
o It enables maximum parallelism [7,13].  
o It allows full configurability and flexibility [12].  
o It provides order of magnitude improvements for the energy-delay 

product per operations, the computation efficiency, and performance 
per area [7].  

Serial and parallel connections of memristors were proposed for the 
realization of Boolean logic gates with memristors by the so-called 
memristor ratio logic. In such circuits the ratio of the stored resistances in 
memristor devices is exploited for the set-up of Boolean logic. Memristive 
circuits realizing AND, OR gates and the implication function were presented 
in [14,15,19]. Hybrid memristive computing circuits consist of memristors 
and CMOS gates. The research of Singh [17], Xia et.al. [18], and 
Rothenbuhler et.al.[19] are representative for numerous proposals of hybrid 
memristive circuits, in which most of the Boolean logic operators are 
handled in the memristors and the CMOS transistors are mainly used for 
level restoration to retain defined digital signals. 
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Perspective: Resistive computing, if successful, will be able to significantly 
reduce the power consumption and enable massive parallelism; hence, 
increase computing energy and area efficiency by orders of magnitudes. 
This will transform computer systems into new highly parallel architectures 
and associated technologies, and enables the computation of currently 
infeasible big data and data-intensive applications, fueling important 
societal changes. 

Research on resistive computing is still in its infancy stage, and the 
challenges are substantial at all levels, including material and technology, 
circuit and architecture, tools and compilers, and algorithms. As of today 
most of the work is based on simulations and small circuit designs. It is still 
unclear when the technology will be mature and available. Nevertheless, 
some start-ups on memristor technologies are emerging such as KNOWM. 

A couple of start-up companies appeared in 2015 on the market who offer 
memristor technology as BEOL (Back-end of line) service in which 
memristive elements are post-processed in CMOS chips directly on top of 
the last metal layers. Also some European institutes reported just recently 
at a workshop meeting “Memristors: at the crossroad of Devices and 
Applications” of the EU cost action 1401 MemoCis the possibility BEOL 
integration of their memristive technology to allow experiments with such 
technologies. This offers new perspectives in form of hybrid 
CMOS/memristor logic which use memristor networks for high-dense 
resistive logic circuits and CMOS inverters for signal restoration to 
compensate the loss of full voltage levels in memristive networks.  Multi-
level cell capability of memristive elements can be used to face the 
challenge to handle the expected huge amount of Zettabytes produced 
annually in a couple of years. Besides, proposals exist to exploit the multi-
level cell storing property for ternary carry-free arithmetic [20], [21] or 
both compact storing of keys and matching operations in future associative 
memories realized with memristors [22].   

Impact on hardware: Due to its nature which is Non-Von Neumann, 
resistive computing will significantly change the way we used to design our 
computers, both from software as well as from hardware perspective. It will 
enforce datacentric and reconfigurable computing. Hybrid memristive 
networks can reduce energy and area requirement of logic circuits 
compared to pure CMOS. Massively parallel networks of memristors could 
form specialized accelerators to solve NP-hard problems [7]. 

Currently the interfacing and the peripheral to access memristive elements 
costs a lot of energy. Appropriate low energy driver circuits and new design 
flows are necessary to face the challenges for memristive circuits to use 
them. At the end extreme low-energy consumption devices can be realized 
both for big data applications with computing-in-memory and high-
performance embedded computing devices that can be operated completely 
by energy harvesting mechanisms thanks to the use of memristors which 
offer low energy consumption circuits, high storage densities and low 
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number of latency states in arithmetic circuits due to carry-free additions 
with ternary number representations. 
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	Neuromorphic	Computing	

Neuromorphic Computing, as developed by Carver Mead in the late 1980s, 
describes the use of very-large-scale integration (VLSI) systems containing 
electronic analog circuits to mimic neuro-biological architectures present in 
the nervous system. 

The basic idea of Neuromorphic Computing is to exploit the massive 
parallelism of such circuits and to create low-power and fault-tolerant 
information-processing systems. Aiming at overcoming the big challenges of 
deep-submicron CMOS technology (power wall, reliability, and design 
complexity), bio-inspiration offers alternative ways to (embedded) artificial 
intelligence. The challenge is to understand, design, build, and use new 
architectures for nanoelectronic systems, which unify the best of brain-
inspired information processing concepts and of nanotechnology hardware, 
including both algorithms and architectures [9]. A key focus area in further 
scaling and improving of cognitive systems is decreasing the power density 
and power consumption, and overcoming the CPU/memory bottleneck of 
conventional computational architectures [14]. 

In recent times, the term neuromorphic has also been used to describe 
analog, digital, and mixed-mode analog/digital VLSI and software systems 
that implement models of neural systems (for perception, motor control, or 
multisensory integration). The implementation of neuromorphic computing 
on the hardware level can be realized by oxide-based memristors, threshold 
switches and transistors [1, 2, 3, 4]. Such kind of research is still in its 
infancy. 
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Current state: Large scale neuromorphic chips exist based on CMOS 
technology, replacing processor cores by artificial neural networks. 
Research projects on neuromorphic computing are the following. 

Mapping brain-like structures and processes into electronic substrates has 
recently seen a revival with the availability of deep-submicron CMOS 
technology. Large programs on brain-like electronic systems have been 
launched worldwide. At present, the largest programs are the SyNAPSE 
program (Systems of Neuromorphic Adaptive Plastic Scalable Electronics) in 
the US (launched in 2009, [10]) and the EC flagship Human Brain Project 
(launched in 2013, [11]).  

SyNAPSE is a DARPA-funded program to develop electronic neuromorphic 
machine technology that scales to biological levels. More simply stated it is 
an attempt to build a new kind of computer with similar form and function 
to the mammalian brain. Such artificial brains would be used to build robots 
whose intelligence matches that of mice and cats. The ultimate aim is to 
build an electronic microprocessor system that matches a mammalian brain 
in function, size, and power consumption. It should recreate 10 billion 
neurons, 100 trillion synapses, consume one kilowatt (same as a small 
electric heater), and occupy less than two litres of space ([10]).  

The “Cognitive Computing via Synaptronics and Supercomputing” (C2S2) 
project is a funded project from DARPA’s SyNAPSE initiative. Headed by IBM 
the group will turn to digital special-purpose hardware for brain emulation. 
The True North chip is an impressive outcome of this project integrating a 
two-dimensional on-chip network of 4096 digital application-specific cores 
(64 x 64) and over 400 Mio. bits of local on-chip memory (~100 Kb SRAM 
per core) to store synapses and neuron parameters as well as 256 Mio. 
individually programmable synapses on-chip. One million individually 
programmable neurons can be simulated time-multiplexed per chip, 
sixteen-times more than the current largest neuromorphic chip. The chip 
with about 5.4 billion transistors is fabricated in a 28nm CMOS process (4.3 
cm² die size, 240µm x 390 µm per core). By device count, True North is the 
largest IBM chip ever fabricated and the second largest (CMOS) chip in the 
world. The total power, while running a typical recurrent network at 
biological real-time, is about 70mW resulting in a power density of about 
20mW/cm2 (about 26pJ) which is in turn comparable to the cortex but three 
to four orders-of magnitude lower compared to 50-100W/cm2 for a 
conventional CPU [12]. 

Another US initiative is the Brain Corporation (qualcomm venture). It is a 
pioneer in developing novel algorithms based on the functioning of the 
nervous system, with applications to vision, motor control, and autonomous 
navigation. It is working with partners to design specialized hardware that 
will bring to market the next generation of smart consumer products with 
artificial nervous systems [5]. 

The Human Brain Project (HBP) is a European Commission Future and 
Emerging Technologies Flagship. The HBP aims to put in place a cutting-
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edge, ICT-based scientific research infrastructure that will allow scientific 
and industrial researchers to advance our knowledge in the fields of 
neuroscience, computing and brain-related medicine. The Project promotes 
collaboration across the globe, and is committed to driving forward 
European industry. Within the HBP the subproject SP9 designs, implements 
and operate a Neuromorphic Computing Platform with configurable 
Neuromorphic Computing Systems (NCS). The platform provides NCS based 
on physical (analogue or mixed-signal) emulations of brain models, running 
in accelerated mode (NM-PM1, wafer-scale implementation with about 
200.000 analogue neurons on a wafer in 180nm CMOS), numerical models 
running in real time on digital multicore architectures (NM-MC1 with 18 ARM 
cores per chip in 130nm CMOS), and the software tools necessary to 
design, configure and measure the performance of these systems. The 
platform will be tightly integrated with the High Performance Analytics and 
Computing Platform, which will provide essential services for mapping and 
routing circuits to neuromorphic substrates, benchmarking and simulation-
based verification of hardware specifications [12]. 

Closely related to HBP are the Blue Brain Project and the BrainScales 
project. The goal of the Blue Brain Project (EPFL and IBM, launched 2005): 
“… is to build biologically detailed digital reconstructions and simulations of 
the rodent, and ultimately the human brain. The supercomputer-based 
reconstructions and simulations built by the project offer a radically new 
approach for understanding the multilevel structure and function of the 
brain.” The project uses an IBM Blue Gene supercomputer (100 TFLOPS, 
10TB) with currently 8,000 CPUs to simulate ANNs (at ion-channel level) in 
software [15]. 

The European funded research project BrainScaleS (Brain-inspired 
multiscale computation in neuromorphic hybrid systems) aimed at 
understanding and emulating functions and interactions of multiple spatial 
and temporal scales in brain-information processing. Both, numerical 
simulations on Petaflop supercomputers and fundamentally different non 
Von Neumann hardware architectures were employed for this purpose. 
Within its broad scope of advancing neuromorphic computing, the hardware 
part is a very-large-scale, mixed-signal implementation of a highly 
connected, adaptive network of analogue neurons. The basic element is the 
HICANN (High Input Count Analog Neural Network) chip hosting one 
analogue network core and necessary support circuitry for communication 
as well as controlling. The HICANN was implemented in a 180 nm CMOS 
technology, has a total of 112K synapses and 512 neuron circuits and is the 
basic component of the HBP NM-PM1 platform [13]. 

According to Olivier Temam's website [6], the following things have been 
achieved for hardware neural networks: 

o ASIC-like energy efficiency on a digital CMOS and an analog design. 
o Tolerance to permanent faults on both GPUs and a custom design. 
o Tolerance to transient faults. 
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o That about half of the PARSEC benchmarks could benefit from an NN 
accelerator. 

o A small-footprint high-throughput accelerator for enabling state-of-the-
art machine-learning in data centers or embedded systems [7]. 

o Tape out of a 3D stacked NN to outline that 3D stacking might be a 
particularly suitable scalability path for neuromorphic architectures [8]. 

Perspective: Software implemented artificial neural networks on HPC-
clusters, multi-cores (OpenCV), and GPGPUs (NVidia cuDNN) are already 
commercially used. FPGA acceleration of neural networks is available as 
well. From a short term perspective these software implemented neural 
networks may be accelerated by commercial transistor-based neuromorphic 
chips or accelerators. Future emerging hardware technologies, like 
memcomputing and 3D stacking [8] may bring neuromorphic computing to 
a new level and overcome some of the restriction of Von Neumann based 
VLSI systems in terms of scalability, power consumption or performance. 

The building blocks for ICs and for the Brain are the same at nanoscale 
level: electrons, atoms, and molecules, but their evolutions have been 
radically different. The fact that reliability, low-power, reconfigurability, as 
well as asynchronicity have been brought up so many times in recent 
conferences and articles, makes it compelling that the Brain should be an 
inspiration at many different levels, suggesting that future nano-
architectures could be neural-inspired. The fascination associated with an 
electronic replication of the human brain has grown with the persistent 
exponential progress of chip technology. The present decade 2010–2020 
has also made the electronic implementation more feasible, because 
electronic circuits now perform synaptic operations such as multiplication 
and signal communication at energy levels of 10 fJ, comparable to biological 
synapses. Nevertheless, an all-out assembly of 1014 synapses will remain a 
matter of a few exploratory systems for the next two decades because of 
several challenges [9]. 

Impact on hardware: Neuromorphic computing would be efficient in 
energy and space and applicable as hardware accelerator. 

Particularly attractive is the application of ANNs in those domains where, at 
present, humans outperform any currently available high-performance 
computer, e.g., in areas like vision, auditory perception, or sensory motor-
control. Neural information processing is expected to have a wide 
applicability in areas that require a high degree of flexibility and the ability 
to operate in uncertain environments where information usually is partial, 
fuzzy, or even contradictory. Even more computational power may be 
obtained by emerging technologies like quantum computing, molecular 
electronics, or novel nano-scale devices (memristor, spintronics, nanotubes 
(CMOL)) [9]. 
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	Quantum	Computing		

Today's computers, both in theory (Turing machines) and practice (personal 
computers) are based on classical bits which can be either 0 or 1 to perform 
operations. Modern Quantum Computing systems operate differently as 
they make use of quantum bits (qubits) which can be in a superposition 
state and entangled with other qubits [1]. Superposition and entanglement 
are thus the two main phenomena that one tries to exploit in quantum 
computing. Superposition implies that a qubit is both in the ground and the 
excited state. Entanglement means that two (or more) qubits can be 
combined with each other such that their states have become inseparable.  
This gives rise to very interesting properties that can be exploited 
algorithmically.   

The computational power of a quantum computer is directly related to these 
phenomena and the number of qubits. Two qubits can hold four values at 
any given time, namely (00, 01, 10, and 11). With each qubit that is added, 
the compute capacity of the quantum computer is doubled and thus 
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increases exponentially. All these qubits states (in superposition and 
entangled with each other) can then be manipulated in parallel as, e.g., 
gates are applied on them which gives the exponential computing power. 
The problem is that building a qubit is an extremely difficult task as the 
quantum state that is needed is very fragile and decoheres (losing the state 
information due to dynamic coupling with the external environment) rapidly.  
In addition, it is impossible to read out the state of a qubit, which ultimately 
is necessary to get the answer of a computation, without destroying the 
superposition state, thus destroying information contained in the qubit 
state. Basically, it turns into a classical bit that houses only a single value 
[2]. 

Current state: A well-known but highly debated example of a quantum 
computer is the D-Wave machine built by the Canadian company with the 
same name [2]. It is not yet proven that D-Wave actually uses the above 
mentioned quantum phenomena nor has any exponential speedup been 
shown except in one isolated case but which was not considered conclusive 
by the independent researchers such as M. Schroyer from ETH Zurich [3].  
In addition, D-Wave is based on quantum annealing and thus only usable 
for specific optimization problems. 

An alternative direction is to build a universal quantum computer based on 
quantum gates, such as Hadamard, rotation gates and CNOT.  Google, IBM 
and Intel have all initiated research projects in this domain and currently 
superconducting qubits seem to be the most promising direction [4] [5] [6] 
[8]. 

Currently, the European Commission is preparing the ground for the launch 
in 2018 of a €1 billion flagship initiative on quantum technologies [9]. 

Perspective: Making use of Quantum Computing has the benefit to 
improve the speed-up of certain computations enormously, and even allows 
solving problems that are impossible for classical computing. Even though 
the challenges are substantial, they can be separated in physics oriented 
and engineering oriented ones.  The physics challenges primarily have to 
address the lifetime of qubits and the fidelity of qubit gate operations.  The 
engineering challenges go from identifying relevant algorithms and provide 
compiler and runtime support.  It is also clear that a quantum computer will 
require a supercomputer to provide the necessary quantum error correction 
mechanisms as error rates of around 10-3 are not uncommon. As the 
quantum phenomena require mK (milli Kelvin) conditions, the control logic 
should be brought as close as possible to reduce the transfer of data up to 
room temperature computers. Understanding how conventional CMOS 
behaves under cryo-conditions is another challenge. 

Quantum Computing might have the advantage to solve some problems 
that couldn't be solved with classical computers - one example is Shor’s 
algorithm for decryption which, at least assuming that a large scale 
quantum computer can be built consisting of millions of qubits, could 
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decrypt a 2000 bit word in around one day which is completely impossible 
for conventional supercomputers. 

In the short term, the Quantum Key Distribution algorithm (QKD) [6] can 
be used as a new encryption technology that relies on the fact that, when a 
third party tries to eavesdrop, the entangled state is immediately 
destroyed. 

Further quantum algorithms are [7]:  

o Grover’s Algorithm is the second most famous result in quantum 
computing. Often referred to as “quantum search,” Grover’s algorithm 
actually inverts an arbitrary function by searching n input combinations 
for an output value in √n time. 

o Binary Welded Tree is the graph formed by joining two perfect binary 
trees at the leaves. Given an entry node and an exit node, The Binary 
Welded Tree Algorithm uses a quantum random walk to find a path 
between the two. The quantum random walk finds the exit node 
exponentially faster than a classical random walk. 

o Boolean Formula Algorithm can determine a winner in a two player 
game by performing a quantum random walk on a NAND tree. 

o Ground State Estimation algorithm determines the ground state energy 
of a molecule given a ground state wave function. This is accomplished 
using quantum phase estimation. 

o Linear Systems algorithm makes use of the quantum Fourier 
Transform to solve systems of linear equations. 

o Shortest Vector problem is an NP-Hard problem that lies that the heart 
of some lattice-based cryptosystems. The Shortest Vector Algorithm 
makes use of the quantum Fourier Transform to solve this problem.  

o Class Number Computes the class number of a real quadratic number 
field in polynomial time. This problem is related to elliptic-curve 
cryptography, which is an important alternative to the product-of-two-
primes approach currently used in public-key cryptography. 

o It is expected that machine learning will be transformed into quantum 
learning - the prodigious power of qubits will narrow the gap between 
machine learning and biological learning [3]. 

In general, the focus is now on developing algorithms requiring a low 
number of qubits (a few hundred) as that seems to be the most likely 
reachable goal in the 10-15 year time frame. 

Impact on hardware: An interesting point to investigate is a better 
hardware architecture supporting the power efficiency of quantum better. If 
this is too complex, it should be at least possible to provide a hybrid 
architecture of both systems enabling to run the simplest sequences of an 
application as usually on classical computers and the complexe ones on 
quantum co-processors. By doing this, the system performance can be 
improved during runtime [8]. 

As pointed out earlier, a quantum computer will always be a heterogeneous 
computing platform where conventional supercomputing facilities will be 
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combined with quantum processing units.  How they interact and 
communicate is clearly a challenging line of research [7]. 
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5. Beyond	CMOS	

Nanotubes		

Carbon nanotubes (CNTs) are tubular structures of carbon atoms. These 
tubes can be single-walled (SWNT) or multi-walled nanotubes (MWNT). 
Their diameter is in the range of a few nanometers. Their electrical 
characteristics vary, depending on their molecular structure, between 
metallic and semiconducting [1]. 

A CNTFET consists of two metal contacts which are connected via a CNT. 
These contacts are the drain and source of the transistor. The gate is 
located next to or around the CNT and separated via a layer of silicon oxide 
[4]. 

Current state: In September 2013, Max Shulaker from Stanford University 
published a computer with digital circuits based on carbon nanotubes. It 
contains a 1 bit processor, consisting of 178 transistors and runs with a 
frequency of 1 kHz. [2] 

Nanotube-based RAM is a proprietary memory technology for nonvolatile 
random access memory developed by Nantero (this company also refers to 
this memory as NRAM) and relies on the effect that nanotubes lying cross 
over can either be touching each other or are slightly separated, depending 
on their position. A NRAM “cell” consists of a non-woven fabric matrix of 
CNTs located between two electrodes. The resistance state of the fabric is 
high (representing “off” or “0” state) when (most of) the CNTs are not in 
contact and is low (representing “on” or “1” state) vice versa. To switch the 
NRAM between states, a small voltage greater than the read voltage is 
applied between top and bottom electrodes. In theory NRAM can reach the 
density of DRAM while providing performance similar to SRAM. [5] 

Perspective: It will take a an unknown number of years before NRAM 
drives might be in production stage  [3]. 

Impact on hardware: CNTs can be utilized for a lot of different 
applications in several areas of research. The most promising ones for HPC 
are the construction of carbon nanotube field-effect transistors (CNTFETs), 
nanotube-based RAM (or Nano-RAM) and the improvement of chip cooling. 
CNTs are very good thermal conductors. Thus, they could significantly 
improve conducting heat away from CPU chips [6]. 
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Graphene	

In 2010 two physicists at Manchester University in the U.K. shared a Nobel 
Prize in Physics for their work on a new wonder material: graphene, a flat 
sheet of carbon with the thickness of a single atom. Konstantin Novoselov 
and Andre Geim discovered the material by applying plain old sticky tape to 
simple graphite [1]. 

Graphene grows on semiconductor i.e. on the surphase of a germanium 
crystal, which is seen as big step towards manufacturability, see [5, 6]. 

Current state: In 2010, IBM researchers demonstrated a radio-frequency 
graphene transistor with a cut-off frequency of 100 Gigahertz. This is the 
highest achieved frequency so far for any graphene device. In 2014, 
engineers at IBM Research have built the world’s most advanced graphene-
based chip, with performance that’s 10,000 times better than previous 
graphene ICs. The key to the breakthrough is a new manufacturing 
technique that allows the graphene to be deposited on the chip without it 
being damaged [4]. 

Graphene Project is an EC Flagship project with considerable research 
efforts in making graphene useful, however, still focused more on the 
material science perspective than on its potential usage for future computer 
technology. Graphene is among the strongest materials known and has 
attractive potential also outside of computer technology, e.g., as electrodes 
for solar cells, for use in sensors, as the anode electrode material in lithium 
batteries and as efficient zero-band-gap semiconductors [2]. 

Perspective: Graphene is a promising technology in laboratory. Due to the 
fact that the new graphene manufacturing method is actually compatible 
with standard silicon CMOS processes, it will probably be possible to realize 
commercial graphene computer chip in future [4]. 

Since in its current form graphene is not suitable for transistors, 
researchers have been working on a way to convert it for this use.  

Impact on hardware: Graphene has an excellent capacity for conducting 
heat and electricity. 
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Diamond	Transistors	

Diamonds can be processed in a way that they act like a semiconductor. 
Diamond based transistors can be fabricated.  

Current state: Researchers at the Tokyo Institute of Technology fabricated 
a diamond junction field-effect transistors (JFET) with lateral p-n junctions. 
The device shows excellent physical properties such as a wide band gap of 
5.47 eV, a high breakdown field of 10 MV/cm (3–4 times higher than 4H-SiC 
and GaN), and a high thermal conductivity of 20 W/cm*K (4–10 times 
higher than 4H-SiC and GaN). It has been found that this diamond 
transistor works with excellent electrical characteristics, up to 723 K [1]. 

Perspective: Currently the gate length of the fabricated diamond 
transistors is in the single-digit micrometer range. Compared with the 
current 22nm technology with gate lengths of about 25nm [2], a reduction 
in size is absolutely necessary in order to allow fast working circuits 
(limitation of the propagation delays).  

Producing reasonable diamond wafers for mass production could be possible 
with the method of [3]. The time for producing diamond wafers is another 
factor that has to be reduced drastically to compete with other technologies. 

Impact on hardware: The high thermal conductivity of diamond, which is 
several magnitudes higher than that of conventional semiconductor 
material, allows faster heat dissipation. This could solve the temperature 
problem of stacked dies. Switching energy of a diamond based 
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semiconductor is expected to be much smaller than silicon and the 
maximum operating temperature can be much higher. It may "revive" the 
traditional Moore law. 
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