
Master of Science Thesis

An Analysis and E�cient Implementation of

Felzenszwalb's Object Detection System

Dan Zecha

Universität Augsburg

Fakultät für Angewandte Informatik

Multimedia Computing and Computer Vision Lab

Supervisor: Prof. Dr. Rainer Lienhart

Augsburg, March 2013

Revised Version (28.03.2013)

Abstract

In this thesis we introduce an implementation of discriminatively trained, deformable

part models, a reliable and award winning object detection system. The detector

relies on a deformable structure of multiple detection �lters made from histograms

of oriented gradients to enable the detection of objects that appear in a wide variety

of con�gurations. We develop a clean C++ implementation that is faster than the

code provided by Felzenszwalb et al, the creators of the system, without loosing any

detection performance. We exploit the convolution theorem to speed up time critical

parts and show that it is possible to signi�cantly decrease computation time.

Zusammenfassung

In dieser Abschlussarbeit stellen wir die Implementierung eines zuverlässigen Objek-

terkennungsverfahrens vor. Das System baut auf einer verformbaren Anordnung von

mehreren Erkennungs�ltern (auch Teile�lter genannt) auf, welche aus Gradientenhis-

togrammen zusammengesetzt sind, die in der Lage sind, Objekte mit einer groÿen

Vielfalt an Erscheinungsmöglichkeiten in Bildern zu erkennen. Wir entwickeln eine

saubere Implementierung, die schneller ist als der von den Er�ndern des Verfahrens

verö�entlichte Code, ohne dabei Erkennungsleistung einzubüÿen. Dazu nutzen wir das

Faltungstheorem, um zeitkritische Bereiche im Code zu beschleunigen und zeigen, dass

die Berechnungszeit deutlich verkürzt werden kann.

Contents

Contents i

1 Introduction 1

2 Preliminaries 3

2.1 Histograms of Oriented Gradients 3

2.2 Linear �ltering . 7

2.2.1 Filtering in Image Processing 8

2.2.2 Score Filtering . 8

2.2.3 Filtering in Frequency Domain 10

2.2.4 Overlap-Add and Overlap-Save 11

2.3 Distance Transform . 12

3 Algorithm Analysis 15

3.1 Object Detection with Pictorial Structures 15

3.1.1 Deformable Part Models . 15

3.1.2 Feature Pyramid Scoring . 16

3.1.3 Deformable Part Model Scoring 18

3.1.4 Mixture Models . 20

3.1.5 Post Processing . 20

3.2 Original Implementation Analysis 22

3.2.1 Technical Overview . 22

3.2.2 Model Type . 23

3.2.3 Algorithm Analysis . 24

4 Implementation 33

4.1 Implementation Strategy . 33

4.2 Model Casting and Datatypes . 34

4.3 Implementation in Detail . 36

4.3.1 Feature Pyramid . 36

4.3.2 Feature Map Convolution . 37

4.3.3 Distance Transform and Model Structure 39

4.3.4 Object Location and Post Processing 39

i

4.4 Code Usage . 40

5 Evaluation 41

5.1 Test Setup . 41

5.2 Memory Footprints . 42

5.3 Runtime Evaluation . 45

5.4 Average Precision . 48

5.5 Final Ranking . 50

6 Conclusion and Future Work 53

Bibliography 55

ii

Chapter 1

Introduction

The �eld of computer vision has gained a lot of attention within the last years,

as increasing computational power allows for very sophisticated algorithms in

everyday devices. Beyond the task of enhancing images in creative and design

�elds, the industry discovered the professional use of image processing algorithms

for monitoring processes �rst. Through the last years, cameras have become

an important and often "invisible" part of our lives: smartphones automatically

detect faces and facial expressions, cars assess their immediate environment and

assist their drivers in automatic braking actions and remind them of speed limits,

and satellites monitor the weather around the world in real-time by observing the

planet from space.

One of the probably most important and well researched tasks in the image

processing domain is the unsupervised detection of objects in images. Exponen-

tially growing disk space lets image databases all around the world grow very fast.

Automatic analysis and interpretation of images is not only interesting for secret

services, but also for image hosting platforms like Flickr and imgur or companies

like Google, for very di�erent reasons like improving the search for speci�c images

or analyzing an image in order to display appropriate advertising near it.

This Master of Science thesis analyzes and reverse engineers one of the most

exiting state-of-the art object detection systems. The desciminatively trained,

deformable part based models introduced by Felzenszwalb et al. in 2006 [8] won

multiple awards and are one of the most noted and researched systems in the

object detection community in the last years. They use the histograms of ori-

ented gradients framework [2] and build �lters to allow for computing heatmaps

that indicate the position and size of object instances in images. A deformable

con�guration is de�ned for multiple �lters that cover and detect parts of the de-

sired object class and are therefore much more adaptable to wide variations in

appearance of objects in images.

The creators published a research implementation of the system that works

excellent with only one �aw: it is very slow. This thesis focuses on implementing

a clean version of the object detection code while trying to optimize certain slow

1

parts and therefore increase the execution speed.

We will at no point discuss the steps necessary to train the system and refer

the reader to [8, 5, 9] for more details.

Overview

This thesis has the following structure: we give insight into a few general tech-

niques used by the algorithm in the chapter 2. Chapter 3 introduces the basic

concept and functionally of the object detection system, followed by a deep anal-

ysis of the research code. In chapter 4, we present an own implementation and

discuss changes in methodology. In the last chapter, we compare our code ver-

sions against the original implementation and discuss the memory footprints and

time requirements as well as their average precision.

2

Chapter 2

Preliminaries

In the following chapter, we will give some insight into fundamental knowledge

needed in order to fully grasp Felzenszwalb's object detection approach. In the

�rst section, we discuss histograms of oriented gradients as the feature of choice.

Section two gives insight into the basic notion of �ltering as a general image

processing procedure, but also in context of scoring �lters made of dense grids

of features. The last section shortly explains a general distance transform, an

e�cient way of computing all shortest pairwise distances between points in a

discrete array of arbitrary function values.

2.1 Histograms of Oriented Gradients

In order to get an idea about histograms of oriented gradients, we discuss the con-

cept and application of gradients �rst. Let f(x1, . . . , xn) be an arbitrary function

with n parameters. A gradient ∇ of this function is de�ned as

∇f =


∂
∂x1

f
...
∂
∂xn

f

 . (2.1)

Thus, a gradient is a vector with the partial derivatives of a function f as

entries. We like to point out that the term gradient in general does not describe

just one vector, but a �eld of vectors, one for each combination of input parameters

in the original function. We will only discuss 2-dimensional functions and thereby

2-dimensional gradients, as a digital image is basically a function with two input

parameters x and y denoting a pixel position on a discrete grid and an intensity

value/triple as the output.

A 2-dimensional gradient vector in a plane has two important properties,

namely amagnitude or length and a direction. The magnitude of a 2-dimensional

intensity gradient v at (x, y) is given by

r(x, y) =
√
〈v,v〉 =

√
x21 + x22, (2.2)

3

while the direction of the vector can be computed by

Θ(x, y) = atan2(x2, x1). (2.3)

Considering an arbitrary 2-dimensional function, each gradient vector points

to the greatest rate of increase in a region, and the length of a gradient vector is

an indicator for the steepness of the slope.

As the notion of using gradients in image processing is fundamental for un-

derstanding Felzenszwalb's approach, we like to discuss gradients in this context

more vividly. An image can be seen as a discrete 2-dimensional function. The

two �nite input parameters x and y describe the coordinates of every pixel in that

function, and the intensity value at a pixel position is the output of the function.

The size of an image is �nite, so we can compute a �nite number of gradient

vectors for it. The gradient is de�ned through the partial derivatives of a function,

so the question arises how a discrete function like an image may be derived. In

image processing, the derivation of an image can be approximated by means of

di�erential �ltering. A very popular smoothed di�erential �lter often used for

edge detection is the Sobel-operator. It is de�ned as

Sx =

1 0 −1

2 0 −2

1 0 −1

 (2.4)

and

Sy = STx (2.5)

for the derivation of the image in x and y direction, respectively. Such �lters are

applied to an image via discrete convolution, given by

(I ∗ F)(x, y) =
∞∑

j=−∞

∞∑
i=−∞

I(i, j) · F (x− i, y − j), (2.6)

whereas I(x, y) denotes the image an F (x, y) an arbitrary �lter. Note that the

�lter response may be smaller than the original image as border pixels don't

have enough neighbor pixels to compute a correct response. It depends on the

application whether either the missing neighbor pixels are interpolated or the

gradient computation of border pixels is ignored completely.

In order to compute the gradient �eld of an image, two gradient �lters are

applied to the image, one for each dimension. A gradient vector for a pixel (x, y)

is then formed combing the entries of both �lter response maps at the position

(x, y) to one vector.

The basic notion behind using intensity gradients for object detection is to

describe an object through its edge distribution. The magnitude of a gradient

vector of a homogeneous area in an image is zero. A gradient vector at an edge

though does not only have a high magnitude indicating the intensity of that

4

edge, it also represents the edge's orientation as it always has a perpendicular

orientation towards that edge.

Considering every gradient vector of an image for object detection is not useful

for two reasons: it would be computational infeasible and, more importantly, a

model that considers all gradient information of an object would not be robust

against a�ne transformations like rotation, scaling, displacement and distortion

of the object in di�erent images. This is why groups of gradient vectors are

combined to a feature called histograms of oriented gradients.

The term histogram denotes a representation of the distribution of data. It

joins values of a given continuous variable together in non-overlapping bins, i.e.

ranges of values, in order to give a density estimation of that data. The very

common application of this statistical approach in image processing are color or

intensity histograms. An intensity histogram depicts the distribution of intensity

values in an image by simply counting the occurrences of intensities and visualizing

them in a bar graph. To count every intensity individually leads to an unnecessary

�ne-grained histogram. Usually, the bin size is increased which leads to a coarser

histogram resolution. Increasing the bin size to e.g. 10 means that all pixels with

a value between 0 and 9 are pooled in the �rst bin, values 10 to 19 are summarized

in the second bin and so forth.

The basic notion of histograms is applicable to a gradient as well. Recall the

orientation Θ(x, y) and the magnitude r(x, y) of a gradient vector at a position

(x, y) in an image. The gradient orientation can be discretized into one of p bins.

While the size of a bin in an intensity or color histogram is a range of intensity

values, it is a range of angle values in the context of gradient histograms.

There are two di�erent de�nitions for discretization of gradients, given by

B1(x, y) = round

(
p ·Θ(x, y)

2π

)
mod p (2.7)

and

B2(x, y) = round

(
p ·Θ(x, y)

π

)
mod p (2.8)

where B1 denotes a contrast sensitive feature while B2 represents a contrast insen-

sitive de�nition. Note that the only di�erence between both is that the orientation

is divided by 2π or π, respectively. The division by π leads to vectors pointing

in opposite directions (more precisely: opposite bins) being joined in one and the

same bin for the insensitive case. Hence, the insensitive de�nition does not con-

sider whether the gradient is computed in an area where the pixel intensity along

its orientation increases or decreases; like a straight line g which is rotated with

π at any point P ∈ g, mapping the line on itself, it just captures the presents and

orientation of an edge.

5

With either one of the de�nitions we might de�ne a feature vector at (x, y)

F (x, y)b =

{
r(x, y) , b = B1/2(x, y)

0 , otherwise
(2.9)

with b ∈ {0, · · · , p− 1}. For each pixel (x, y), the gradient vector is discretized to

one of p bins.

Histograms of oriented gradients (HOG), initially proposed by Dalal and

Triggs in 2006 [2], is formed by spatially aggregating edge histograms in cells

C(i, j). A cell is a square region within the feature map of a w · h image. Let

k > 0 be a parameter specifying the side length of a cell, then all feature vectors

F (x, y)b in each cell are summed up element-wise for a dense grid of i ·j cells with
0 5 i 5 b(w − 1)/kc and 0 5 j 5 b(h − 1)/kc. It is common to use a bin size of

p = 9 and a cell size of k = 8. This leads to a p-dimensional feature vector for

each HOG-cell. Dalal and Triggs proposed normalization and truncation of

HOG-features in order to gain invariance to changes in bias.

Normalization of a feature C(i, j) is achieved via normalization factorsNδ,γ(i, j)

with δ, γ ∈ {−1, 1}, given by

Nδ,γ(i, j) = (‖C(i, j)‖2 + ‖C(i+ δ, j)‖2+
‖C(i, j + γ)‖2 + ‖C(i+ δ, j + γ)‖2)0.5.

(2.10)

Hence, we obtain four normalization factors for all tuples of (δ, γ). Normalization

takes 4-tuples of HOG-cells according to equation (2.10) and sums up their overall

gradient energy. Component-wise truncation Tα(C(i, j)) denotes the process of

replacing an element cb in the feature vector C(i, j) with min(α, cb). The �nal

HOG-feature is then de�ned as a 9× 4 matrix

H(i, j) =


(Tα(C(i, j))/N−1,−1(i, j))

(Tα(C(i, j))/N+1,−1(i, j))

(Tα(C(i, j))/N+1,+1(i, j))

(Tα(C(i, j))/N−1,+1(i, j))

 . (2.11)

As a result of normalization, the features at the border of the cell based feature

map should not be considered for further computation due to the fact that the

complete normalization takes the gradient energy of all eight neighbors of a cell

into account, so border cells can't be normalized properly. Commonly, these

features are discarded.

Felzenszwalb et al. proposed to use smaller features in order to minimize the

number of parameters in their models and speed up the detection and learning

processes. They analyzed the principal components [10] of a collection of HOG-

features and derived a 13-dimensional alternative feature that obtained the same

performance as the original 36-dimensional one. The new feature is computed

by summing over all four normalizations and and by summing over the nine

6

orientation bins in the feature matrix 2.11. This leads to a 9 + 4 - dimensional

new contrast insensitive feature. Also, their �ndings indicated that some object

classes bene�t from contrast insensitive features while the detection performance

improved for other classes using contrast sensitive features.

The �nal system implements features that combine both contrast sensitive and

insensitive features. Recall that the original insensitive feature, without normal-

ization and truncation, has p = 9 dimensions. We can easily de�ne a contrast

sensitive feature through equations (2.9) with (2.7) and p = 9 and concatenate

both to a (9 + 18)-dimensional feature vector. Equation (2.11) tells us that the

normalized version is a matrix with (9 + 18) · 4 = 108 entries. The improved

version of this feature vector is then obtained by summing over the 9 + 18 = 27

columns of the matrix and concatenating it with 4 sums over the orientation of

the 9 contrast insensitive orientations. This leads to a �nal feature vector length

of 27 + 4 = 31 dimensions. Felzenszwalb et al. add another entry at the end

of each feature, called a truncation feature, that is usually set to 0 except for

arti�cially generated features for padding, where it is set to 1 in order to indicate

the di�erence between a padded border cell and a "real" feature.

The whole process of compressing the features has a very simple reason: in

further computation, extensive amounts of dot products of di�erent HOG-features

are computed. Hence, it is very desirable to keep the feature length short as this

massively shortens computation time. The improved features are much shorter

without a signi�cant loss in performance, according to [8].

Apart from normalization and truncation, soft-binning is applied as one fur-

ther optimization of HOG-features on cell level that improves robustness of the

whole system. The idea behind soft-binning is that the gradient at a pixel (x, y)

should not only give its whole energy, i.e. magnitude, to just one cell, but also to

adjacent cells as well. We examine one gradient in one of the four quadrants of

a hog cell. Every quadrant is neighbor to three adjacent HOG-cells. Soft-binning

computes the distance of the gradient's position to the center of its own cell and

to its quadrant's cell borders. If its position is very close to the center of its own

cell, almost the whole gradient magnitude is added to its own histogram. The

closer it is to the neighbor cells though, the more of its energy is added to the

corresponding bins of the adjacent histograms. This makes a complete HOG-map

much more robust against small displacement of objects in images.

2.2 Linear �ltering

Filtering is a very basic concept in image processing. It is for example used for

�nding edges (di�erential or high- pass �lters) or smoothing (low-pass �lters)

images. The concept of �ltering can also be applied for scoring speci�c �lters

on feature maps in order to �nd objects in images. We brie�y discuss �ltering

7

methods in this section and point out peculiarities we take advantage of in our

own implementation of the object detection system.

2.2.1 Filtering in Image Processing

In section 2.1, we discussed how a low-pass �lter like the Sobel-operator is applied

to an image via discrete convolution 2.6. A �lter F , sometimes also referred to as

kernel, is a matrix that in most cases of classical �ltering is very small compared

to the image I it is applied to. The convolution F ∗ I takes this �lter, mirrors it

at its center, and computes a convolution result for every subwindow in an image

through the dot product of �lter and subwindow. It is di�cult to obtain the

complete convolution of a �lter with an image for all border pixels, as these do not

have enough neighbors. In image processing, missing pixels are often interpolated,

e.g. by mirroring the image onto the missing regions. Besides interpolation, the

convolution in border regions can also be rejected, especially for very small �lter

kernels.

To avoid confusion in the following course of this thesis, we like to point out

a small �neness in terminology: In their original paper [8], Felzenszwalb et al.

talk about taking the dot product of a �lter and the subwindow of a feature map,

while comments in the code talk about convolution for this process. Both dot

product and convolution are two related mathematical operations, hence we can

say that a convolution is a series of dot products with a mirrored �lter. Also, a

dot product is a convolution were we mirror the �lter �rst and then restrict the

convolution parameters i, j in equation (2.6) to just one position, discarding the

sum.

2.2.2 Score Filtering

Apart from computing gradients of an image, there is a second application using

the concept of �ltering in Felzenszwalb's object detection system: scoring a �lter

on a feature map.

Therefore, we use special �lters, consisting of concatenated HOG-features, al-

though the general idea does not depend on a speci�c feature framework. A

HOG-�lter can simply be obtained by computing a feature map as described in

section 2.1 and cutting out an arbitrary subwindow. In general though, these �l-

ters are trained with a discriminative procedure from large sets of labeled images.

We can easily observe the notion of using gradients and speci�cally HOG-

features for object detection in �gure 2.1. The HOG-�lter on the right side was

trained for detecting people in images. We can slightly recognize the abstract

contour of a person in that �lter. Recall that the HOG-features are computed

from gradients which indicate the presence of edges in an image. The outline of

a person in the derivate of an image leads to very clear edges, which ultimately

appear very distinctive in the feature map.

8

Figure 2.1: A HOG-�lter (left) trained from a set of images depicting persons (right)
(source: [8]).

In 2006, Dalal and Triggs proposed a methodology [2] for using HOG-�lters

for object detection. They trained a �lter for detecting persons and applied it by

computing the HOG-feature map of an image and thresholding the dot product

of the �lter and every subwindow in the feature map. If there was a person in

the image, then certain subwindows of the feature map obviously would be very

similar to the feature map of the �lter, and the dot product between both would

lead to a very high value, or score. If the �lter covered a subwindow depicting a

scene from the background though, then the score would be signi�cantly smaller.

As this approach would only work for people that have the same size as the trained

HOG-�lter in the image, they rescaled the image multiple times, repeating the

computation for each scale. The set of all �lter scores will be denotes a response

map from this point on.

The whole procedure closely resembles the convolution of a normal �lter kernel

with an image with one important di�erence: the dot product between a HOG-

�lter and the feature map intuitively makes sense at positions where the �lter

completely covers a subwindow of the feature map and the features completely

overlap. The dot products at all other positions don't yield any useful informa-

tion, which means that we can simply restrict the number of �lter positions to

meaningful positions. In the following, we will refer to this "restricted" way of

�ltering as block-wise convolution.

9

2.2.3 Filtering in Frequency Domain

We can implement a fast convolution between a �lter and an image by taking

advantage of properties of frequency space to minimize the number of arithmetic

operations.

We stated earlier that an image (and also a �lter) is a special case of a 2-

dimensional function. The 2d discrete fourier transform (DFT, [11]) is a powerful

tool in digital signal processing and expresses a discrete time-domain signal in

frequency domain as a sum of weighted sine and cosine basis-functions. Once in

frequency domain, the convolution theorem allows for �nding a computational

less expensive implementation of the convolution in time domain.

Let f(xt, yt) and g(xt, yt) be two discrete, 2-dimensional functions, which can

be transformed by a 2-dimensional discrete fourier transform through

F(f) = F (u, v) =
1

MN

M−1∑
m=0

N−1∑
n=0

f(m,n) · exp
(
−j2π

(um
M

+
vn

N

))
, (2.12)

with j being the imaginary unit and M × N the size of the DFT. The back-

transformation is further

F−1(F) = f(m,n) =

M−1∑
m=0

N−1∑
n=0

F (u, v) · exp
(
j2π

(um
M

+
vn

N

))
. (2.13)

Then the convolution theorem states:

F(f ∗ g) = F(f) · F(g)⇔ f ∗ g = F−1(F(f) · F(g)). (2.14)

In other words, we can express the convolution in time domain by transform-

ing both functions to frequency domain, computing the element wise product

and transforming the result back. This would be much faster, as the number

of element-wise operations is far smaller than the number of multiplications and

summations in the conventional convolution. This of course needs a very fast

transformation to and from frequency domain. The (inverse) fast fourier trans-

formation ((i-)FFT) o�ers a very fast implementation for both directions under

certain conditions.

The convolution theorem also applies to image �ltering, where both functions

are replaced with the image and the �lter (or featuremap and HOG-�lter), re-

spectively. If we like to implement this procedure, there are several tripwires we

have to avoid. Both functions have to be zero-padded to have the same size. The

size of the discrete fourier transform is always the same as the size of the dis-

crete function in time domain. Unfortunately, to retrieve the correct convolution

result, both maps have to be padded even further. The reason for this is that

the convolution theorem performs a circular convolution which wraps the �lter

around the image borders if parts of it do not completely overlap with the image.

The solution to this problem is just enough padding. For one dimension, let L be

10

the side length of the image and P the side length of the �lter, then the ideal size

N for the FFT is

N = L+ P − 1. (2.15)

This rule also applies to the second dimension.

We mentioned that the FFT is a very fast implementation of the DFT under

the condition that the size of every dimension of the FFT has to be a power of 2.

In most cases this means that both image and �lter have to be padded once more

in order for the FFT to work fast. Even with this much padding, experience shows

that in combination with a good FFT library, convolution can be implemented

much faster in fourier-space. Block-wise convolution though cannot be replaced

as the convolution theorem needs all values of the functions in order to work

correctly. Nevertheless, we present a workaround in chapter 4.

2.2.4 Overlap-Add and Overlap-Save

In the previous section, we listed three padding steps necessary to compute the

correct convolution result in frequency space. We like to brie�y introduce algo-

rithms that minimize this padding by disassembling the convolution theorem into

blocks which can be processed successively.

The general steps are the same as explained before. The di�erence is that the

image, which should be larger that the �lter, is cut into pieces/blocks and the

convolution theorem is applied in the same way. The only di�culty that arises is

that the response maps have to be stitched together in the correct way.

For the sake of simplicity, we explain the algorithms just for 1-dimensional

functions. All steps can simultaneously be applied to the second dimension with-

out limiting the functionality. Recall that N is the size of the FFT and L and P

denote the sizes of image (here: image pieces) and �lter, respectively.

The Overlap-Add algorithm implements the convolution theorem by cutting

the image into non-overlapping blocks with the length L. A FFT with the length

N = L + P − 1 is computed for this block and, as the size of a block is known

beforehand, was also computed for the �lter. After the element-wise multiplica-

tion, the inverse transform of the result is computed. The result blocks overlap at

P − 1 values. The overlapping areas are simply added together in order to form

the complete, correct convolution response.

This approach has two advantages. First, the length N of a FFT is much

smaller for one block as one block is much smaller than the complete image.

Smaller FFT sizes should be preferred as their transformation is usually much

faster. Second, we have to compute the FFT of the �lter only once, as the size

of the FFT stays the same for all blocks. Also, two smaller FFTs are much

more likely to �t in the cache of a processor, which speeds up computation time

as page misses are avoided. In fact, we try to exploit this circumstance in our

implementation in chapter 4.

11

The second approach for computing a block-wise convolution theorem is called

Overlap-Save. This method cuts the image into blocks that overlap at P − 1

values. It computes a FFT with the size N = P . According to equation 2.15, this

FFT is to short and produces false values, i.e. the �rst P − 1 values are a�ected.

This is not a problem as the blocks overlapped in the �rst place. The last L values

are the correct ones, and in contrary to Overlap-Add, the single blocks just have

to be concatenated in order to reproduce to correct convolution result.

2.3 Distance Transform

We discuss general distance transforms of sampled functions [4] in the last section

of this chapter, yet another important basic tool in the �eld of computer vision.

A distance transform of an image speci�es the distance between a pixel and its

closest non-zero pixel, for all pixels in the image.

The traditional distance transform DP is de�ned by

DP (p) = min
q∈P\{p}

d(p, q). (2.16)

d(p, q) is a distance measure between a set of points q and a point p, and the

distance transform searches for the closest point q that has a non-zero value.

Felzenszwalb and Huttenlocher proposed [4] a generalized version of this clas-

sical transform. Let G therefore be a regular grid and f : G → R a function

assigning a real number to each grid cell. This of course is a generalization of an

image de�nition. They de�ned a general distance transform to be

Df (p) = min
q∈G

(d(p, q) + f(q)). (2.17)

Additional to the simple transform, each point in the grid now has a function

value that in�uences the distance in a certain way, where larger function values

of course lead to a larger distance transform.

The question of interest is how to compute such a transform for the whole grid

e�ciently. The original work proposes an algorithm which solves the transform

in linear time. They use the squared Euclidean distance, which leads to

Df (p) = min
q∈G

((p− q)2 + f(q)). (2.18)

For a one dimensional grid, the distance transform for each point q ∈ G is bounded
by a parabola rooted at (q, f(q)). The set of all parabolas then forms a lower

envelope (�gure 2.2), which exactly de�nes Df (p). The computation of this

envelope is the essential step in �nding the distance transform.

In order to grasp the basic notion of envelope computation, we examine three

directly adjacent parabolas a, b and c on a 1-dimensional grid, where a is a neigh-

bor to b and b is a neighbor to c. The algorithm proposed in [4] studies the

12

Figure 2.2: The set of n parabolas de�ning constrains for the distance transform, which
is given by their lower envelope (red). The algorithm excludes parabolas (blue) if they
do not contribute to the envelope. (source: [4])

intersections between the parabolas: if the position of the intersection between a

and b is to the right of the position of the intersection between a and c, then b

obviously does not contribute to the envelope. Figure 2.2 depicts this situation

clearly. The algorithm can iteratively extend the envelope to the right, always

checking the intersections and discarding parabolas that do not contribute.

We can easily extend this approach to the two dimensional case. Therefore,

we compute the envelope for each row of the grid �rst and discard all unnecessary

parabolas. Similarly, on the basis of all horizontal envelope, we can iteratively

scan through all columns and reject more parabolas that do not support the

envelope in this dimension.

We do not discuss the implementation of this procedure in detail here and refer

the reader to [4] for further details and a pseudocode implementation. Felzenswalb

et al. modify the general distance transform in order to do the exact opposite,

i.e. maximize grid values, which allows for high values to spread across the grid.

This of course does not change the general approach.

13

Chapter 3

Algorithm Analysis

Within the last years, research in object detection has focused on recognizing

generic classes of objects rather than speci�c instances. Felzenszwalb et al. [7]

introduced a pictorial structure representation, where an object is modeled by

a collection of parts that are somehow arranged in a deformable con�guration.

Therefore, each part represents a visual property of an object class, and the de-

formable con�guration is represented by a graph structure with spring-like edges.

Such a model is applied to an image by minimizing an energy function, taking the

deformation costs of parts into account. Imagine a pictorial structure for persons:

One part is a detector for the whole body, while there are several parts speci�cally

trained to detect parts of a person, e.g. the head, arms, legs and the torso. As

the appearance of a person is more dynamic, the deformable con�guration of such

a model allows to catch a wide variety of appearances in images.

3.1 Object Detection with Pictorial Structures

In the next section, we introduce deformable part models as a speci�c implemen-

tation of pictorial structures. The main focus of this work is the analysis and

e�cient implementation of the detector, which is why we will ignore the training

of the models. We will give an insight into the structure of a deformable part

model and focus on the question how it is applied to an image.

3.1.1 Deformable Part Models

Discriminatively trained, deformable part models take the notion of pictorial

structures and model an object through a star-structure with one part de�n-

ing a coarse root �lter and several higher resolution �lters modeling parts of an

object class. Filters, root and parts, are represented by linear HOG-feature maps

introduced in section (2.1) which are matched with feature maps as explained in

section (2.2).

A deformable part model is formally de�ned by a (n+ 2)-tuple

M = (F0, P1, · · · , Pn, b) (3.1)

15

Figure 3.1: A simple deformable part model for persons. Feature map (a) de�nes a coarse
root �lter covering the whole object, while (b) is a collection of part �lters for smaller
parts if the object. (c) depict deformation costs for the parts. (source: [8])

where F0 is the root �lter, Pi is a template for a part i and b is a bias value for

that model. A part Pi is furthermore a 3-tuple

Pi = (Fi, vi, di) (3.2)

with Fi being a �lter for a part of the object with an anchor position vi relative

to the root �lter F0 and deformation cost di which allow for this part to have

a certain displacement from its intended position vi. Figure 3.1 depics a simple

deformable part model for persons.

Recall that the object is represented by HOG-feature maps. Even though

histograms of oriented gradients are slightly invariant to very small di�erences in

size of an object, they are not suited to cover all scales of objects. In order to

de�ne the score of a model for di�erent object sizes, we specify a feature pyramid.

3.1.2 Feature Pyramid Scoring

A feature pyramid is a set of feature maps for a �nite number of scales. Prac-

tically, a feature pyramid is computed by iteravely smoothing and subsampling

an original image and computing the features for each scale. Therefore, the pa-

16

Figure 3.2: A feature pyramid is created by iteratively resizing the image and computing
a feature map for each level. (source: [8])

rameter λ de�nes the number of levels in an octave as the distance between two

layers in the feature pyramid, where the upper layer has twice the resolution of

the lower one. Figure 3.2 depics the construction.

In practice, λ is chose to be λ = 5 for model training and λ = 10 for testing.

This means that feature pyramids are much larger in test cases, which is important

for obtaining a high performance with a model.

Contrary to �gure 3.2, we de�ne the feature pyramid in reverse order with

the largest layer on the top, getting smaller as we move down the scales. This

might seem unnecessary, but this de�nition is much more related to the existing

MATLAB implementation.

With the term feature pyramid speci�ed, we would like to de�ne a score of a

feature map. Let H be a feature pyramid and p = (x, y, l) a position (x, y) within

the l-th layer of the pyramid. Also, let F denote a w × h �lter and Φ(H, p,w, h)

a concatenation of all feature vectors in a w × h subwindow of H with p being

the root of the subwindow. The score of F is then de�ned via

score(F) = 〈F ′,Φ(H, p,w, h)〉 = 〈F ′,Φ(H, p)〉 (3.3)

with F ′ is the vector obtained by concatenating all feature vectors in F . Since the

size of Φ(H, p,w, h) is implicitly de�ned by the size of F , we may write Φ(H, p)

instead.

17

3.1.3 Deformable Part Model Scoring

Let pi = (xi, yi, li) be the placement of a �lter fi in the l-th layer of a feature

pyramid. Since all part �lters have twice the resolution of the root �lter, they are

placed one octave away from the root �lter layer, with li = l0 − λ for i > 0.

While the score of a single �lter at a speci�ed position can be computed very

easily, scoring a complete deformable part model is more complicated as the de-

formable con�guration of the parts has to be taken into account. The score of a

deformable part model is given by

score(p0, · · · , pn) =

n∑
i=0

〈F ′i ,Φ(H, pi)〉 −
n∑
i=1

〈di,Φd(dxi, dyi)〉+ b. (3.4)

The �rst dot product computes the score of every �lter with a subwindow as

explained in section 2.2 and sums them up to an overall score. The second dot

product takes the part-�lter displacement into account with

(dxi, dyi) = (xi, yi)− (2(x0, y0) + vi) (3.5)

being the displacement of the �lter relative to the root. The root position (x0, y0)

is multiplied with the factor 2 to adjust it to the double resolution of the part's

layer. The displacement vi is added to the root �lters position, setting the nominal

position of the �lter. Subtracting it from the actual position yields the displace-

ment. The dot product of di with the deformation feature

Φd(dx, dy) = (dx, dy, dx2, dy2) (3.6)

yields a smaller value for the second sum in equation 3.4 for small displacements

and therefore a higher overall score. The term b in equation (3.4) is a bias which

makes di�erent models comparable when combined to a bigger mixture model.

Given a feature pyramid and a deformable part model, we can detect an object

within an image. The object detection process is an optimization problem, given

by

score(p0) = max
p1,··· ,pn

(p0, · · · , pn), (3.7)

where the score of the root �lter is extended with responses of the part �lters in

order to form a full model hypothesis.

To compute the best locations of the parts, the approach in [8] uses the gen-

eralized distance transform introduced in section (2.3). Let

Ri,l = 〈F ′i ,Φ(H, (x, y, l))〉 (3.8)

be an array storing the complete response of the i-th �lter with the l-th layer of

the the feature pyramid. A response is computed via a sliding window approach,

introduced in section (2.2). It is then transformed in order to allow for spatial

uncertainty,

Di,l = max
dx,dy

(Ri,l(x+ dx, y + dy)− 〈di,Φd(dx, dy)〉). (3.9)

18

Figure 3.3: The matching process of a deformable part model at one scale. Filters for the
root and the parts are convolved with feature maps from di�erent scales in the feature
pyramid. The responses are transformed to allow for spatial uncertainty. Summing up
the transformed responses with the root response yields the overall score for the scale.
(source: [8])

The transformation takes high scoring detections (of any �lter) and spreads it

around nearby locations. Figure 3.3 illustrates this process.

19

The form of equation 3.9 closely resembles the general distance transform 2.3

where 〈di,Φd(dx, dy)〉 is a distance measure and Ri,l(x + dx, y + dy) a function

value.

The overall score of a deformable part model at a layer in the feature pyramid

adds the response array of the root �lter to the transformed and subsampled

responses of the part �lters, computed at one octave above the root layer, through

score(x0, y0, l0) = R0,l0 +

n∑
i=1

Di,l0−λ(2(x0, y0) + vi) + b. (3.10)

Figure 3.3 depicts the whole matching process at one speci�c scale.

3.1.4 Mixture Models

A problem that arises when using only one deformable part model (one root and

associated part �lters) for object detection is that the richness of object categories

as well as viewpoint change and partial truncation cannot be captured by a single

model. Imagine the object class of cars: they are built in di�erent shapes and

sizes and thereby vary greatly in appearance. Also, a model trained for detecting

cars from the side would perform poorly on an image where a car is shown from a

frontal viewpoint. We face the same problem if the camera viewpoint is not ideal

or too close to the object; in both cases, the object will only be partially visible in

an image (truncation). While heavy occlusion might not be a problem for most

object classes, it is very desirable to deal with this problem for other classes. For

instance, we want to detect the whole body of a person as well as any person on

a passport photo where most of the body is truncated. Figure 3.4 illustrates this

problem.

One way to deal with all problems mentioned above are mixture models as

an extension to a single deformable part model. A mixture model is a m-tuple

M = (M1, · · · ,Mm) where each Mi is a single deformable part model. We will

refer to each of these models as submodels in the following. Combining di�erent

submodels to one bigger mixture model allows for dealing with abundance of

object categories as well as viewpoint problems. In case of the car class, di�erent

models can be trained on di�erent types of cars and on di�erent viewpoints, i.e.

for a frontal view on a class versus a side view. In case of a person class, one

model might be trained to detect the whole body of a person while a second one

recognizes truncated persons.

3.1.5 Post Processing

Matching a complete mixture model with a feature pyramid often yields multiple

high scores for the same instance of an object and thereby a lot of bounding

boxes framing that object. The original code uses a greedy non-maximum

suppression procedure in order to eliminate double detections. All detections

20

Figure 3.4: Di�erent mixture models. Figures (a) and (b) depict a typical case of trun-
cated objects, and their deformable part submodels. Figures (c) and (d) illustrate di�er-
ent perspectives on the same object, the second reason for combining multiple submodels
to a mixture model. (source: [8, 3])

in an image are sorted by score, and the highest scoring ones are selected while

detections that are at least 50% covered by a previous one are skipped.

The desired output of an object detection system is not clearly de�ned. The

VOC-challenge [3] assesses the performance of an object detector though the

bounding box of an object. Felzenszwalb et al. improve the bounding boxes with

a bounding box predictor. The notion is that the best scoring positions of the

21

Figure 3.5: Bounding box prediction resizes a bounding box by taking the best scoring
positions of the parts into account. (source: [8])

part �lters within a detection describe the dimensions of an object instance far

better than a single, coarse root �lter. Hence, the bounding box predictor resizes

a bounding box according to the positions of the part �lters. Figure 3.5 depicts

such an optimization.

3.2 Original Implementation Analysis

In the previous sections, we introduced the preliminaries for detecting objects in

images with multiscale, deformable part models. In this section, we take an orig-

inal implementation apart and analyze the di�erent stages necessary to perform

object detection.

3.2.1 Technical Overview

The algorithm we analyze here is the original implementation by Felzenszwalb

et al [6]. Although the latest version number is 5, we work with version 4.1,

as we have far more experience with it through previous work. Also, version 5

22

implements optimizations like the star-cascade detector which we did not want to

consider in our implementation.

The aforementioned implementation was used in the Pascal Visual Object

Classes Challenge (VOC-Challenge, [3]), where it won a lot of prices in di�erent

detection categories over the years. Hence, it works with the evaluation frame-

work (VOCdevkit) provided by the challenge, which includes a vast amount of

annotated images and algorithms for determining precision and recall as well as

average precision computation. For all our tests, we used the VOCdevkit from

the year 2010. This development kit includes images from 2007 to 2010. As a

result, the models we used for evaluation, are trained on the 2010 database with

the code version 4.1.

Version 4.1 of the code is generally implemented in Matlab, with time-critical

section implemented in ANSI C. It runs on Windows and Linux. The 'compile.m'

script compiles the C code into the Matlab friendly format '*.mexw64', which can

directly be executed from the Matlab command shell.

3.2.2 Model Type

We give a short overview of the structure of a version 4.1 model for documentation

purposes mainly. A model is saved in a binary format which can not be used in

C++ straight away, which makes a translation of the models into an exchange

format necessary. Each model saves more information than we actually need

for a simple object detection application. The additional information is either

needed for the training of the models, which we don't cover in this work, or for

documentation and debugging. We con�ne the model description to the necessary

elements in the following.

We address elements within the model type in an object oriented way with the

member access operator. A model is a struct that has the following members:

• model.class: the object class name the model initially was trained for, e.g.

person, car, cat, etc.

• model.year: the year of the VOC database this model was trained on

• model.�lters: an array of �lter data of this object model. Each array en-

try is a structure where model.�lters.w hold the weights of each �lter and

model.�lters.size the size of a single �lter. As a �lter is basically a patch

of HOG-features, the weights matrix is a 3-dimensional matrix where the

�rst two dimensions address the �rst element of every feature vector while

the third dimension holds the actual feature data. Felzenszwalb et al. use

HOG-features with a dimension of 32 (see section 2.1), which means that

the third dimension of the weights matrix is always 32-dimensional. The

size of each �lter is therefore a two dimensional vector, holding the number

23

of cells of each �lter. The �lter array does not hold any information about

the structure of the model, i.e. the �lters are not sorted in any fashion.

• model.symbols: holds information whether a �lter is a terminal 'T' or a

non-terminal 'N'. We will give a short insight into the notion of representing

objects in images with grammars in section (3.2.3).

• model.rules: represents rules in an object grammar. There are two kinds

of rules for each model: deformation rules and structural rules. Structural

rules hold the structural information of the model, i.e. which �lters are

roots, which are parts, how they form single submodels with their biases in

model.rules.o�set and what the ideal positions of a part relative to its root

is (in model.rules.anchor). Deformation rules save the deformation costs for

each �lter in model.rules.def.

• num�lters: the overall number of �lters in a model

• maxsize: the size of a �lter that could cover all �lters in the model, as its

dimensions are the maxims over the dimensions of each �lter.

• interval: size of one octave in the feature pyramid.

• sbin: length of one side of a quadratic cell on which a HOG-feature is com-

puted, usually equals 8.

• thres: detection threshold for the whole model.

• bboxpred: a bounding box predictor. Resizes bounding boxes in order to

improve model performance.

3.2.3 Algorithm Analysis

Before we start looking into details of the implementation, we give a short overview

of the basic algorithm. We boiled the object detection process down to a very

simple version:

1 process(image , model){

2 feat = compute_feature_pyramid(image , model);

3 responses = filter_pyramid(feat , model);

4 apply_deformation_rules(responses , model);

5 apply_structural_rules(responses , model);

6 detections = threshold_detections(responses , model);

7 bbox = compute_bounding_boxes(detections , model);

8 bbox_im = improve_detection(bbox , model);

9 }

While the original code is of course much more convoluted, this �attened

version captures all essential steps. A feature pyramid is computed from the

24

original image and every layer in the pyramid is convolved with every �lter in the

model (lines 2-3). To each layer, a distance transform is applied in order to allow

for spatial uncertainty of parts (line 4). The transformed responses of part �lters

are then subsampled, shifted and added to the corresponding response of their

root �lter (line 5). The resulting response pyramids, one for each submodel, are

then searched for maxima greater than a threshold (line 6). All these maxima

correspond to positive detections, and from the position of a maximum and the

size of the root �lter of the submodel that created this maximum, we can derive

the bounding box of a detection (line 7). Each bounding box may be improved

using a bounding box predictor (line 8). With the position and size of a bounding

box, we yielded the location and size of an object instance in the image.

We take a deeper look at the single steps in the following sections.

Feature Pyramid Computation

The �rst step before applying a deformable part model is to compute a feature

pyramid. The �lters in the model are of course rigid and can not be changed

in size, so we have to adjust the size of the image in order �nd object instances

with di�erent sizes, as explained in section (3.1.2). The height of the feature

pyramid depends on di�erent factors. For one, the size of one octave o, as saved

in model.interval and usually set to o = 10 for object detection, sets a scaling

factor sc, where

sc = 2o
−1
. (3.11)

Second, the smaller edge length of the image also contributes to the formula that

computes the size maxscale of the feature pyramid,

maxscale = 1 +

⌊
log

(
min(size(image))

5 ·model.sbin

)
/ log(sc)

⌋
. (3.12)

The factor '5' in equation 3.12 is a system-speci�c parameter set by the developers

in the original code. Hence, an image with the size 800x600 and an octave size of

10 would result in a feature pyramid with overall 40 layers. This is actually not

the correct size of the �nal pyramid, as equation (3.12) only accounts for shrinking

the image. In reality, one extra interval with larger feature maps is computed,

which would lead to a pyramid size of 50 for our example.

Before an image is rescaled, it is converted to double. Computing the pyramid

by iterative subsampling is done pretty e�cient in the original code:

1 for i = 1:interval

2 // rescale image in octave

3 scaled = resize(im , 1/sc^(i-1));

4 // compute features for first interval

5 pyra.feat{i} = features(scaled , sbin/2);

6 // scale for second interval

7 pyra.scales(i) = 2/sc^(i-1);

25

8 // features for second interval

9 pyra.feat{i+interval} = features(scaled , sbin);

10 // all other intervals

11 for j = i+interval:interval:max_scale

12 scaled = resize(scaled , 0.5);

13 pyra.feat{j+interval} = features(scaled , sbin);

14 end

15 end

For the �rst two intervals of the pyramid, the code rescales the image only one

time with the appropriate factor (line 3). The trick is to compute the feature map

for the top interval from half the usual cell size (sbin/2 in line 5), i.e. using 4x4

sized cells instead of 8x8. This leads to a feature map with twice the resolution

without having to rescale the image a second time. The rest of the pyramid is

computed the common way though (lines 11-14) by consecutively rescaling the

image with the factor 0.5 and computing the feature maps. This process creates

the single layers in a distributed but fast way.

After resizing the image, a HOG feature map is computed for each layer in the

pyramid. Computation of features is an expensive task which was outsources to

C code by the developers.

We described in section (2.1) the steps we have to take in order to compute

the features: for each pixel, compute the gradient with magnitude and orien-

tation, snap the orientation to one of 9 (insensitive) or 18 (sensitive) bins, add

the magnitude to the according bin and normalize the features. The �rst di�er-

ence here is that color images have 3 channels, one for the color blue, green and

red, respectively. This is simply solved by computing the gradients of all three

channels separately and choosing the one with the highest magnitude, discard-

ing the two remaining vectors. Instead of convolving each color channel with the

Sobel-�lter, gradient computation is done on the �y by simply subtracting the left

pixel value from the right one for the x−derivative and and the top one from the

bottom one for the y−derivative at an arbitrary pixel position. This procedure

strongly corresponds to partially deriving an image via Sobel-�ltering. In order

to �nd the correct bin for each gradient, Felzenszwalb et al. use 9 normalized

sample-gradients placed at the center of each bin. They compute the dot product

between their gradient and each of the sample-gradients. The dot product leads

to a very high value for the correct bin, and gets smaller for gradients that are

further away from their correct bin. This is a brute-force method of course as

they always have to compute 9 dot products for every gradient in the image. For

a sensitive gradient they just have to negate the result of each dot product. This

seems very ine�cient though and we will introduce an optimization for this step

in chapter 4.

The last steps in HOG-computation are soft binning and normalization. Soft

binning uses linear interpolation to divide the magnitude of a gradient between

26

neighboring cells. The closer a pixel that corresponds to a gradient is to the

border of a HOG-cell, the more of its gradient magnitude is added to the correct

bin in the three directly adjacent cells of the cell quadrant. Normalization of

groups of 4 adjacent HOG-cells is achieved as describes in section 2.1. Each entry

in a feature vector is truncated with a truncation factor of 0.2, and the feature

is divided by a normalization factor derived from the complete neighborhood of

a cell. As the cells at the border of the feature map do not have to necessary 8

neighbors needed for normalization, they are discarded, leading to a feature map

that lacks two rows and two columns of features. A feature vector is created with

9 contrast insensitive, 18 contrast sensitive, 4 "texture" and 1 truncation feature,

which is always set to 0.0 here.

Padding completes the generation of each feature map in the feature pyramid.

An object can be truncated in an image, which is why each feature map is padded

with additional HOG-features at each side. The size of the padding is given though

the maximal size of the �lters (in model.maxsize) to assure that every �lter in

the model �ts the padding zone. Furthermore, one extra line of feature is added

to each side of the map to compensate for the HOG-features that fell victim to

normalization. All entries but the truncation feature in the padding vectors have

the value 0.0. The truncation component is set to 1.0. Padding is always done

after the feature map is computed already, which is expensive due to memory

reallocation.

This completes feature pyramid generation. We would like to note that the

original implementation always saves all interim results. Additionally to the whole

feature map, the scale of each map is also saved.

Response Maps

The most expensive operation in the whole algorithm is the computation of re-

sponse maps by �ltering every level of the feature pyramid with every �lter in the

model. The score of one �lter at a position (x, y) on one layer of the pyramid,

covering a w×h subwindow (section 3.1.2) is only one �lter response value. As we

are �nally interested in all response values a �lter produces in one layer, the �lter

is moved over the whole image in a scan line fashion, consecutively computing a

response value at each position where it completely covers a subwindow.

Filtering is the most expensive computation step in the algorithm. The feature

pyramid of an image can easily have 45 levels with the dimensions of 130 × 400

HOG-cells for the biggest and 30×92 for the smallest one. A complete deformable

part model can easily hold more than 50 �lters with an average size of 7×7 HOG-

cells. Recall that each HOG-cell has the 32 dimensions, applying each �lter to each

level of the feature pyramid leads to a vast number of multiplications/additions,

even when �ltering only at every 32nd position.

Felzenszwalb et al. o�er multiple implementations for �ltering (or feature-

27

convolution). All implementations are written in C, do the same and di�er only

in how long the convolutions needs. Execution speed is gained by using fast

implementations of BLAS (Basic Linear Algebra Subprograms), or simple paral-

lelization via multithreading (e.g. pthreads).

Apart from di�erences in execution time, the convolution process is the same

in all implementations: the code takes a pair of pointers, one to the feature map

and one the the �rst element of every �lter, and computes the dot product of the

�lter and the correct subwindow by multiplying all entries, summing them and

shifting the feature map pointer the proper amount of entries further for the next

correct overlay. Note that the code actually computes the dot product of both

instead of the convolution we would expect through the term of �ltering. We

pointed out the terminology di�erences with dot product and convolution earlier,

and it is easy to replace the dot product with the convolution by simply mirroring

the �lters of the model prior to convolution.

The convolution function takes a feature map from the feature pyramid and

convolves it with all n �lters in one function call, leading to n �lter responses. All

�lter responses of one pyramid level are then padded with −∞ to the same size

at the bottom and right border of each response map. The responses are then

saved together with an additional 0-initialized response map with the same size

which is needed in order to compute the overall score of the model later.

At this point, the memory footprint is huge due to saving all interim results.

The fact that �ltering has the longest runtime by far within the whole match-

ing process gives reason to search for a way to make it much faster in our own

implementation.

In the next step, we allow for spatial deformation of the parts of a model by

applying a distance transform to the response maps.

Deformation and Structure

Deformable part models where only the �rst step in the development of object

detection grammars according to Felzenszwalb et al. Although this notion of

representing a visual object is mentioned only very brie�y in [8], the original code

implements a slight portion of object detection grammars, mainly to represent

the structure (i.e. submodels, relation between roots and parts) of an object.

Grammar based models as a generalization of deformable part models repre-

sent objects using a hierarchical structure. An object can be de�ned directly or in

terms of parts, which allows for modeling structural variations and sharing infor-

mation between di�erent models, e.g. di�erent parts. As the usage of grammars

in the context of deformable part models is poorly documented, an analysis of

this part of the code is particularly di�cult.

Noam Chomsky introduced a formalization of generative grammars in the

1950s [1], consisting of four basic elements: a �nite set of non-terminal sym-

28

bols N , a �nite set of terminal symbols T , a �nite set of production rules and

a distinguished start symbol S /∈ N . Starting with S, production rules state

recursive replacements within the set of all symbols.

We �nd this structure in the object detection code, too. The interesting mem-

bers of the model that the object detection grammar operates with is 'model.symbols',

'model.rules' and 'model. �lters'. The code currently implements two kinds of

symbols, non-terminals 'N' and terminals 'T', which we �nd in the 'model. sym-

bols' array. Each terminal symbol corresponds to exactly one �lter, �led under

'model.symbols.�lter'. Non-terminals don't correspond to any �lter.

The third important �eld, 'model.rules', o�ers rules on how the symbols are

arranged. We identi�ed two di�erent sorts of rules: structural and deformation

rules. Structural rules describe the structure of the model, i.e. which terminals

(and thereby �lters) de�ne a submodel. All important structural variables, like

which one of the �lters is the root and all anchor positions of the parts relative

to the root, are also associated with a rule. Deformation rules link each �lter

to deformation costs and therefore give the parts of a model their deformable

con�guration. Although the name at �rst sight does not imply it, a deformation

rule just holds information a�ecting the structure of the model, following the

general notion of grammar based object detection.

We found that there is no particular order within all three �elds. As the

grammar is scattered over di�erent data array as well as code fragments, it was

particularly di�cult to grasp its meaning. Our analysis induces the following

interpretation: the underlying structure can be interpreted as a undirected graph,

with a non-terminal root for the whole model. The root can be replaced by

an arbitrary number of non-terminal symbols representing submodels, and each

submodel symbol may be replaced by a variable number of terminals. Terminal

rules hold a binary sub-tree which itself holds a speci�c �lter response in one

branch and a transformed one in the other. Each branch is created during the

runtime of the algorithm.

The �eld 'model.start' points to a rule within the rules-array that holds n

structural rules for n submodels. A lot of rules are empty and all rules that are

not empty or hold a set of structural rules are deformation rules. The order at

which each rule is applied is hidden within the code. The function 'model_sort.m'

performs a topological sort of the non-terminal symbols in the model grammar.

The result is a �eld with rule identi�ers. The code calls each rule according to

the order in this �eld. We found that all deformation rules are executed �rst and

the structural rules are applied after each transformation.

In sections 2.3 and 3.1.3 we introduced the generalized distance transform and

one application in the context of deformable part models. A deformation rule

calls the distance transform on each response map with the correct deformation

parameters for the �lter that produced this map in order to spread high scoring

29

detections of parts. The implementation of the distance transform follows [4] and

applies a horizontal 1-dimensional transform before repeating the procedure in

vertical direction. Figure 3.3 illustrates the result of the algorithm.

As always, the creators save all interim results, in this case the transformed

response maps, in the grammar tree. Also, the envelopes for both x and y-

direction are saved separately and later used in order to detect optimal locations

of part �lters.

After all deformation rules are executed for all response maps, structural rules

total them up to n score pyramids, one for each of the n submodels. We stated

in section 3.1.3 that part �lters are trained one pyramid levels with twice the

resolution of the levels the roots where trained on, de�ning one octave within a

pyramid. As a result, we have to "downsample" the resolution of transformed

part responses.

Each structural rule takes the corresponding submodel and all response maps

created by its �lters. The convolution step created a separate response pyramid

for each submodel with a suitable size. All elements are initialized to an o�set

value we introduced in section 3.1.3. This bias is a value learned during model

training that makes the overall score of di�erent submodels comparable against

each other.

To each layer of the score pyramid, the response of the submodel's root is

added. For the same level level, the part �lter responses from on octave up

the pyramid are considered for sub-sampling. The parts have a certain position

relative to the root, which together with a displacement of the �lters due to

multiple padding steps results in a sub-sampling region at a level. Within that

region, the original algorithm takes every second value in x and y direction to

sample a new map, thereby discarding 75% of the original response. The sampled

map is then added (with a the appropriate o�set) to the transferred root �lter

response one octave down.

The application of structural rules �nally gives us one score pyramid for each

submodel. In the next step, all these pyramids are combined to form an overall

score from which we can derive the position and also the size of an object, given

some additional information like the scale of each level and interim results.

Overall Score and Object Location

To �nd the position and dimension of an object instance in an image, the scores

of all submodels are combined to one single score pyramid. This is fairly simple:

by scanning over every level of every submodel score pyramid, the original imple-

mentation takes the highest scores and copies them to a separate score pyramid.

This is an important stage in the detection algorithm. We now have one

pyramid with detection scores of the whole model for di�erent object sizes. We

can now scan this pyramid and save only high scoring results. A high scoring

30

result is de�ned to have a score higher than a certain threshold. All high scoring

results are written to a special array together with the number of the level they

were found in and the position within that level. Position and level number

directly lead to the position of the object in the original image, given the scale

of the level. However, if we de�ne the position of an object by its bounding

box, we only obtain the top left corner of that bounding box with the available

information.

Felzenszwalb et al. follow their object detection grammar approach in order

to derive the size of the bounding box. The separate C-function 'getdetections.cc'

performs a backward trace for each detection. As they have all interim results

available, they can look up which model computed a certain score. Taking the

size of the root �lter in HOG-cells, the scale of a level with a high detection and

the knowledge that each HOG-cell originally corresponds to a rectangular 8 × 8

pixel region into account, it is possible to rescale the size of the root �lter with

respect to the size of the original image. The resulting rectangle, together with

the top left position, equals the sought bounding box.

At this point, the objective of detecting object instances within an image could

be seen as achieved. In order to improve their detection results, Felzenszwalb et

al. proposed a bounding box prediction step, for which they need the locations

of the parts for a successfully determined bounding box. The highest scoring

location of a part with respect to a high scoring detection and its size can again

be determined by using interim results from the distance transform, namely the

envelope and transformed response maps.

The �nal structure returned by the object detector is a sorted array with a row

for each detection. In each row, we �nd the bounding boxes for all parts and roots

as well as the overall score. A bounding box is de�ned through 4 coordinates, two

for the top-left and two for the bottom-right corner of the box.

The �nal step is post processing to improve the detections though non-maximum-

suppression in order to suppress double detections of object instances. All detec-

tion are sorted by their score. Detections that overlap with more than 50% with

a higher scoring box are discarded. The implemented overlap criterion divides

the intersection of both boxes through the size of the box with the minor score.

If the coe�cient is greater than 0.5, the box is suppressed.

31

Chapter 4

Implementation

In the previous chapter, we discussed discriminatively trained, deformable part

models for object detection as well as the implementation of the detection system

published by the creators. This chapter follows the structure of section 3.2.3 by

describing our own implementation of the system. Most of the code does not

have to be reinvented, of course, which is why we will focus on optimizing partic-

ularly time complex parts of the code. We will disclose a general implementation

strategy and background on used technology in the �rst section and explain our

own implementation in the following sections. We discuss the e�ciency of our

implementation in the next chapter.

4.1 Implementation Strategy

To realize a fast version of the algorithm, we set two main objectives:

1. Memory footprint minimization. This includes avoiding unnecessary alloca-

tion/deallocation as well as keeping data in memory longer than necessary.

The general approach is to try to process data as fast as possible and dis-

card it if no longer needed. The smaller the memory footprint, the higher

the chances of �tting the problem into the cache of the processor. Less cache

misses result in faster execution.

2. Try to �nd faster implementations for time critical code. The convolution

of �lters is the slowest part of the algorithm. We introduced algorithms for

speeding up convolution in section 2.2 and will try to apply them to our

problem.

As we would like to create a very clean implementation, we strip the original

code from all unnecessary functionality, too. This includes not implementing the

�rst implementation of object detection grammars in code version 4.1 and the

star-cascade optimization which is included (but not activated) in version 5.

The original implementation is a mixture of Matlab and C code. We choose

C++ as the implementation language. The interface for I/O of images and data-

33

management will be provided by the Open Computer Vision library (OpenCV

4.1). This interface o�ers functionality for reading and writing images and drawing

bounding boxes. In order to exploit all resources, we use the Intel Integrated

Performance Primitives (IPP 7.1), which o�er highly optimized image processing

and linear �ltering algorithms for Intel CPUs.

4.2 Model Casting and Datatypes

The �rst thing that comes to mind when implementing Felzenszwalb's approach is

that we cannot use the mixture models trained in Matlab for our implementation

directly. We did not examine and implement the training code, which is why we

are not able to train own models. Hence, we need to transfer the Matlab models

to a C++ readable format.

With the structure of models analyzed in section 3.2.2, we created a function

that writes all necessary data to external �les. These are in detail:

• model.model : a simple text �le that contains the name of the object class

the model was trained to detect, the side length of a HOG-cell sbin, the size

interval of an octave in the feature pyramid, the size maxsize of a HOG-

patch with height and width being the maximum over the side-lengths of all

�lters (which can be used for creating a generic �lter template that covers

all �lters in the model), the number of �lters num�lters and the individual

model threshold. All values are commented.

• �lter_*.csv, �lter_m_*.csv : every �lter is saved to its own *.csv �le. Also,

every model contains a center-mirrored version of each �lter, indicated by the

initial '_m_' in the �le name. The asterisk is a placeholder for the number

of the �lter. We give a description of the exact �lter structure below.

• model_anchors.csv : a '*.csv' �le that contains 4 numbers in each line. The

�rst one is the number of the �lter, the second and third are anchor values,

indicating the initial position of a part relative to its root �lter, and the

fourth value is an indicator for whether the associated �lter is a root or a

part.

• model_dt.csv : holds 4 distance transform values of a �lter and bias value.

• model_submodels.csv : instead of programming the structure of the model

into an object detection grammar, we extracted it from the initial model and

the code and derived a single �le that contains all necessary information.

There is one line for each submodel, and each line holds the bias value for

the submodel, followed by the overall number of �lters and the id numbers

of each �lter in the submodel. The �lter ids are sorted so that the �rst value

identi�es the root and the following ids point to the part �lters.

34

All �les are collected in one folder on disk. The loading routine of the model

loads all necessary �les and performs pre-computations if necessary, e.g. FFTs for

�lters.

Matlab generally works with matrix structures that have a column-major or-

der, while C++ works on row-major data. Both methods describe how a mul-

tidimensional array is saved in linear memory. In Matlab, the entries of a 2-

dimensional matrix are addressed from the top to the bottom and then from left

to right, i.e. they are picked column-wise. In C++ though, the order is row-wise,

i.e. from left to right and then from top to bottom.

The memory model of HOG-�lters in Matlab can be geometrically interpreted

as a cube, where the front-side is a matrix that holds the �rst entry of every

HOG-feature, and every k-th layer behind it holds all k-th entries of the feature

vectors. As a result, if we want to address the 5-th entry of the �rst feature in

the top-left corner of the �lter, we have to scan through all �rst values of every

feature in the whole �lter before we �nd the desired value. We �nd that this kind

of memory-organization of �lters is not very intuitive.

We de�ne a new memory layout for �lters in our implementation. First, we

save them in a row-major order. Second, we specify that all values of a feature

vector are saved in a consecutive row, much like a 32-dimensional image. An 8×8

�lter thereby has the size of 8× 8 · 32 and is also saved like this in a '�lter_*.csv'

�le. This allows for easy access of a feature, as all values lie directly behind each

other in memory.

We de�ne a few general data-types in our program. The �rst one is obviously

a class representing a model. We can load a model by passing the path to a folder

holding all model �les. A model generally consists of all variables mentioned

above, but also has some additionally �elds. When loading a model, we compute

an ideal padding size out of all �lter sizes. This padding size is later used to

generate response maps with an ideal size, which makes all additional padding

operations performed in the original code obsolete. Hence, we minimize the num-

ber of unnecessary memory allocations by incorporating them into a computation

that has to be done anyways.

The smallest data-type is a Map_32f, a very simple matrix classes that is

equally used for feature-map and response-array representation. It has a height,

width and number of channels and holds �oating point data as entries.

The Filter class has a Map_32f member saving all �lter values, and additional

members for �lter id, submodel a�liation and o�set, �lter size in blocks, anchor

position and deformation costs.

The structures FFT_Framework and FFT_Framework_ Overlap_Add hold

all informations necessary to compute FFTs of �lters and blocks. If speci�ed in

the code, the FFTs of �lters are precomputed when the model is loaded.

35

4.3 Implementation in Detail

We will discuss a few implementation details in the following section. As we did

not reinvent most parts of the code, we focus especially on the aspects were we

tried to improve the existing implementation.

4.3.1 Feature Pyramid

The �rst big change is implemented in feature pyramid computation. We stated

that we want to keep the memory footprint as small as possible. We do not

have to compute the whole feature pyramid in advance. Equation 3.12 tells us

exactly how many levels a pyramid has. Also, we can compute how the size of a

pyramid level develops through the whole computation as multiple padding steps

are applied to interim results. This allows for creating a score-pyramid for every

submodel in advance, create just one level of the feature pyramid at a time and

process this level to the point where the transformed �lter responses are added

onto the corresponding score pyramids. The pyramid level has then ful�lled its

purpose and can be deallocated again.

The score-pyramids for each submodel are the smallest units we have to keep

in memory all the time. We can derive the locations and sizes of object instances

from them. After computing the height of the pyramids and the optimal size of

each level, we generate them with every value already initialized to the correct

bias of the submodel.

We then iteratively generate a level in the feature pyramid by subsampling the

image and computing the features by taking the same approach as explained in

section 3.2.3. We experimented with di�erent methods of interpolation used for

resizing the image and found that the original implementation correctly rounds

the size of the image, while some common implementations of resize functions, e.g.

in the OpenCV library, always �oor the size the of the scaled image. An image

with a height of 91 pixels, which is rescaled with a factor of 0.5, has a height of 46

pixels versus 45 pixels afterwards, depending on the method of handling �oating-

point numbers. We implemented both versions and compare di�erent rescaling

techniques in chapter 5.

The second step after rescaling a level is feature computation. We described

how this is done in the original code, and as this method is pretty straight forward,

we simply adopt it in our code with some slight changes. First, the original code

takes an image of type double as an input and also returns a double feature map.

We change input and output to adapt to �oating point images. Also, in order

to avoid padding in a later step, we pad each map when allocating memory for

it with model.maxsize + 1 on each side of the map and also set the truncation

feature in the padded area. All other entries are set to 0. The features are then

�lled in the map with the proper o�set.

36

The computation of a HOG-feature �nds the optimal bin for each gradient by

computing the dot-product between the gradient and a set of normalized orienta-

tion vectors. This is a brute force approach which can be prevented under certain

conditions. If the input of the function is neither a double nor a �oat, but a uchar

image, then we can compute the bin and magnitude of every combination of uchar

gradients in advance and save them in a lookup table. This leads to two 511×511

sized accumulators, one for the bins and one for the magnitudes. The advantage

of this is that due to the limited number of values the uchar data-type o�ers,

we can look up the bin and magnitude of every gradient instead of trying every

possible combination for each gradient again and again. This gives us a small, but

noticeable speed up when computing multiple feature maps. Our implementation

handles a uchar image through a lookup table and a �oating-point input with the

traditional implementation. Both generate ideally padded feature map of type

�oat. Every feature map is then passed on to the response computation stage

and deallocated afterwards.

4.3.2 Feature Map Convolution

We implemented multiple forms of convolution which we all discuss in this section.

The �rst convolution is the most straight forward one. It performs a block-wise

convolution as introduced in section 2.2.2. Block-wise means that it takes every

�lter, looks for the perfect feature-vector overlay of the �lter with a subwindow

and computes a response map for all positions with a complete overlap of �lter

and subwindow. This version is implemented with only a few lines of code, is very

fast as we can use highly e�cient functions from the Intel-IPP library and also,

compared to other approaches, uses and compute only necessary values with no

overhead.

We tried to implement di�erent variations of this version by hand and without

using IPP. None of our alternatives was faster than the �rst implementation,

which is why there are not other straight forward convolutions in the code.

Nevertheless, there are di�erent possibilities of expressing a convolution, which

is de�ned in time domain, in frequency domain, as stated in sections 2.2.3 and

2.2.4. We implemented one version of the convolution theorem for both.

The �rst implementation takes a feature map and a �lter, pads both with

enough zeros to ful�ll the condition for a successful convolution in frequency do-

main using the fast fourier transform algorithm, again from the IPP library. Both

map and �lter are then transformed, multiplied element-wise in fourier space, and

the result is transformed back with an inverse FFT. Unfortunately, this approach

has two drawbacks.

First, we have to compute the fourier transform of every �lter for each stage of

the feature pyramid while a feature map has to be transformed only once for one

set of �lters. As all �lters have to be padded to a power of 2 in each dimension,

37

there is some space for minimizing the number of transformations for a couple of

levels in the pyramid where the overall size of the padded �lters does not change.

We optimized the algorithm in a way that the FFTs of �lters are only computed if

the complete padding changes while browsing through the pyramid. This allowed

for recomputing the FFTs for all �lters only 5 times instead of 45 for a sample

image.

The second drawback lies in the nature of the convolution theorem: the com-

plete convolution is computed for the �lter and the feature map. We are interested

only in the block-wise convolution, so we have to search for the correct convolu-

tion values and copy them to our �nal (much smaller) response map. For the sake

of simplicity, we only consider one dimension of �lter and feature-map. Let L be

the length of the feature map and P the length of the �lter. Both are padded to

N = L+ P − 1 and once more in order to set N to a power of 2. The �rst value

of our correct response map is located at position P − 1 of the convolution result.

The following correct values are now located at each multiple of 32. This is not

continued through the whole map, as we come into the padded regions after a

few steps. We locate the last correct entry by computing the size of the correct

response map in advance and counting the correct number of multiples of 32.

We can easily extend this 1-dimensional explanation to the second dimension.

The nature of the convolution theorem always forces us to search for the desired

response values and subsample them to an extra response array, which is far from

ideal.

We implemented an overlap-add convolution, too. This solution at least does

not have the problem of computing the FFTs of �lters multiple times. Instead, we

set a block-size parameter which gives us the size of the FFT for each �lter and

each block we want to convolve in frequency domain. Note that the block-size

parameter is not the same as the block-size in HOG-�ltering. It denotes the size

of a portion of the feature map for which we want to compute the convolution

theorem. For a �xed block size, we can now compute the FFTs of all (ideally

padded) �lters once, as the size of the FFT does not change over the execution

time of the algorithm. A feature map is cut into non-overlapping blocks, each

block is padded to the same size of the �lters and the convolution theorem can be

applied. After the inverse FFT of the block response, the overlapping areas are

added together. The resulting overall map su�ers from the same disadvantage as

the �rst FFT implementation: we have to search and subsample the desired true

response values. We will compare all three implementations in the last chapter.

After computing the response between one level of the feature pyramid and all

�lters, the original code again pads all responses to the same size. This allows for

applying the distance transform, but more importantly to subsample the results

correctly. Padding requires additional allocation and copying of data, which we

like to avoid. We pad the size of every response map before the �rst allocation

38

and set all values in the padded region to −∞. We found that the padding size in

this step is directly in�uenced by the sizes of all �lters. While we load a model,

we therefore compute an ideal padding size from the �lter sizes, and apply this

optimal padding at this point in computation.

We can now discard the resized image and the corresponding feature map as

they served their purpose. The next step transforms the responses and adds them

to the score pyramids.

4.3.3 Distance Transform and Model Structure

At this point in implementation, we choose to ignore the framework of the original

implementation for the �rst time. Felzenszwalb et al. used the notion of object

detection grammars to execute rules and and rearrange symbols. We analyzed to

code an came to the conclusion that we can implement the same semantics without

relying on the surrounding structure. Hence, we exported structural information

about the object to a separate data structure in order to be able reproduce the

results of the original code.

Our simpli�ed code now takes the responses of the �lters and transforms them

using the general distance transform in order to allow for spatial uncertainty of the

part �lters. We use the original implementation which is already very e�cient. It

also uses Matlab column-major notation for accessing the elements of the response

arrays which we change to row-major addressing. Also, it computes the envelope

of the distance transform which we do not need in further computations and

thereby exclude from the code. Apart from these small changes, the original

implementation is adopted as is.

The transformed response maps are then added to the score pyramids with

appropriate shifting and subsampling. This process also closely resembles the

original implementation apart from addressing issues which we adapt. Trans-

formed root responses are simply added to the level with the same size in the

respective score pyramid, and the part responses are subsampled by discarding

every second value from the response map and adding them with an appropriate

shift (which depends on how much the map was previously padded) one octave

down in the score pyramid.

The responses can be deallocated and removed from memory at this point.

After all feature pyramid levels have been convolved with all �lters and the �lter

responses have been transformed and integrated in the score pyramids, the next

step joins to pyramids in order to locate high scoring instances and determine

their sizes.

4.3.4 Object Location and Post Processing

Finding high scoring locations is as simple as in the original implementation. We

�rst join all submodel score pyramids to an overall score by maximizing the score

39

over all levels. In addition, we always save the number of the submodel that

yielded the highest score in an extra �eld.

In the next step, we detect high scoring instances by scanning the �nal score

pyramid and saving all scores that are higher than a threshold. Once again, we

take a di�erent approach compared to the original code. It uses object detection

grammars in this step. The underlying semantics essentially take a high scoring

instance and browser through all interim data in order to �nd out which submodel

produced the score. The model-number then identi�es a root-�lter which size they

use to determine the �nal bounding box.

Our implementation looses the overhead from object detection grammars and

focuses on the main task of determining the correct bounding box. With the id

of the submodel that produced a highest score, we can compute the box taking

into account the size of a HOG-cell and the level of the detection. Note that for

detections in the �rst octave of the pyramid, the cell size was initially halved. Is

is very unlikely to detect high scoring instances in this octave though as its main

purpose is to provide part �lter responses for subsampling to the second octave.

One advantage of saving all intermediate results is the opportunity to look up

the highest scoring positions for each part �lter of a detection. This is the second

part the original code implements in order to apply bounding box prediction for

improved results. As we do not save any interim results, we are not able to

improve our system with a predictor; a step which we are willing to take in order

to minimize the memory footprint.

Non-maximum suppression is a necessary step to delete multiple detections of

the same object instance. We implemented the same procedure from the original

code with the same overlapping criterion, as described in section 3.2.3.

This completes our implementation. We found that it detects objects well

with a noticeable increase in speed for some con�gurations. The next chapter will

extensively analyze runtime and memory footprints and compare the precision

obtained on a big test-set.

4.4 Code Usage

The code appended to this work simply takes an image, loads a model and calls the

'process' method. It is a bit convoluted in order to allow for using all implemented

methods. The 'entry.cpp' contains three �ags, USE_FFT_CONVOLUTION,

USE_FFT_OVERLAP_ADD and USE_HOG_LOOKUP, which are self-explanatory.

The overlap-add method needs to include both FFT �ags.

The code itself needs to be linked against the Intel Integrated Performance

Primitives 7.1 for image processing and the OpenCV 4.1 (or later) library in order

to work correctly. For testing, we compiled the code with the all optimizations.

40

Chapter 5

Evaluation

In the previous chapter, we described our implementation of the object detection

system of [8]. We tried to minimize the memory footprint wherever possible and

realized di�erent optimization approaches. The following chapter analyzes and

assesses their quality by comparing memory consumption over time, runtime and

average precisions of our code in contrast to the original implementation.

5.1 Test Setup

Although the object detection code is not bound to detect just one object class,

we will do the evaluation by using only one casted model for detecting persons in

images. The used model was originally learned from the VOC 2010 image database

with the version 4.1 training code and is easily translated into the format described

in section 4.2. The memory and runtime analysis need a di�erent evaluation

approach than computing the average precision of an algorithm.

We will distinguish between three essentially di�erent implementations: the

�rst one uses a normal block-wise convolution for computing the response maps,

the two others take advantage of the convolution theorem in order to replace the

normal convolution. Together with the original implementation, we have four

implementations to compare against each other. We will also discuss smaller

optimizations and implementation choices that in�uence the outcome.

A test image, depicted in �gure 5.1, is used as a benchmark for the �rst two

tests. It has a size of 604× 403 pixels and shows a person in a more or less "ideal

pose" for the detector. We tested the runtime of the code multiple times for each

variation of the algorithm and computed the average over all executions. The

parameters of the overlap-add procedure in�uence the memory usage while all

other approaches always have the same footprint for a speci�c image.

In order to compute the average precision of any object detection system, we

fall back on the VOC evaluation code [3]. A detector is applied to a database of

images, containing all sorts of scenes with di�erent kinds of objects in them. The

detector returns possible detections to the evaluating system. The detections are

41

Figure 5.1: A benchmark image used for memory and runtime footprint determination.

sorted by their score and compared to ground truth bounding boxes. For every

recall, the system computes the precision of the detector, successively increasing

the recall and measuring the precision every time. This yields a precision-recall

curve. The average precision is then de�ned by the integral over this curve.

Our test database contains 5105 di�erent image from the VOC 2010 test set.

We compare the average precision of all major implementations and slight varia-

tions of them in section 5.4.

All implementations are tested on two setups: a multi-threaded quadcore pro-

cessor with 2.00 GHz evaluates runtime and memory usage by binding the process

of each framework to just one core. To capture an average increase in speed, we

use massive parallelization with OpenMP and a second server setup with 32 logical

processors at 2.70 GHz and measure the time for the complete database.

5.2 Memory Footprints

Figure 5.2 depicts the memory usage of all major implementations over time. We

will discuss every trace in the following.

The original code saves all intermediate results and only deallocates memory

when padding a map of any kind. The �rst graph illustrates this very clearly: The

42

Figure 5.2: Memory footprints for all major implementations. From top down: original
implementation, block-wise convolution, FFT convolution and Overlap-Add method.

memory trace steadily increases during the convolution in the �rst 13 seconds and

even more at the end, especially when computing the distance transforms of the

43

response maps and subsampling the �nal score maps. This yields a total memory

usage of more than 250 MB for our benchmark image.

The trace in the second sub�gure paints a di�erent picture. As we payed a

lot of attention to minimizing allocations and deallocate memory if not needed

any more, we can actually observe a severely smaller memory consumption. The

approach of never pre-computing any information and storing it, but instead

processing every bit of data as soon as it is available and as further as possible

payed o� signi�cantly. We can �rst see that the highest memory consumption

for the benchmark is less than 7 MB, only 2.6% of what the original code needs.

Additionally, the code is much faster, which is only partially owed to memory

management as we will discuss in the next section. We can also observe an

interesting recurring pattern in the trace. The number of repetitive increases is

directly connected to the number of levels in one octave, which is set to 10 for

detecting objects. It is a re�ection of the way of implementing the feature pyramid

creation and steady processing.

The third trace was measured for the �rst simple FFT convolution. Although

we minimized the costs of �lter transformation (see section 4.3.2), the padding

necessary for guaranteeing a correct convolution result by usage of an FFT is

tremendous. Recall that we have to transform every �lter with its additional

padding and the feature map to frequency domain. This lets the memory usage

explode even above the original implementation. We can observe that the code

allocates memory in 5 stages within the �rst 4 seconds of execution. It then has

generated enough �lters for all upcoming levels in the pyramid and the memory

usage does not grow from this point on. Overall, this approach uses about 430

MB of memory constantly.

The last implementation of the Overlap-Add method was implemented to ad-

dress this massive memory problem. By specifying a �xed size of the FFT, we

have to transform every �lter only once when loading a model. The disadvan-

tage of this approach is that instead of transforming a feature map only one time

forward and backward, we have to compute multiple FFTs for the pieces of the

map instead. The resulting memory trace is very similar to the straight forward

implementation of the block-wise convolution in time domain and shows the same

repetitive pattern. However, this pattern starts "higher" due to padding again.

The transformed �lters are much larger that the original ones to guarantee correct

results. This approach needs a little less than 40 MB space at its peak. The overall

consumption of course can be in�uenced by the initial size of the FFT which can

be chosen freely. We found that making the patches smaller, for instance 32×512,

needs only 12 MB of memory. However, as the number of FFTs increases, so does

the computation time. We tried di�erent sizes for an FFT (depicted in �gure 5.3)

and found that a size of 64×2048 works best in terms of minimal execution time.

This setup was also chosen for measuring the last memory trace.

44

Figure 5.3: Execution times of the overlap-add implementation for di�erent FFT sizes on
the benchmark image. The fastest execution can be achieved using a window of 64×2048.

Two of our solutions outperform the original system if we only consider the

memory that was used. The initial plan to try to �t the whole problem into the

cache of a processor is not achieved. The block-wise convolution version has a

very small footprint, but is unfortunately still too big. Due to excessive padding,

both other alternatives are de�nitely not suited.

5.3 Runtime Evaluation

Minimizing the memory footprint is only one way to speed up code. Another

option is to �nd syntactical optimization, i.e. other ways of expressing a problem

mathematically. We created three versions of code that use di�erent concepts for

reaching the same objective. We will discuss the execution time of all variants in

this section. Figure 5.4 depicts the time consumptions of all major steps in each

system, which are feature pyramid computation, �ltering the scores, performing

a distance transform on the responses with additional aggregation of the results

in the score pyramids and all steps for locating objects and improving the results.

The overall execution time is shown on the right of the �gure.

We can determine a few general facts: Post processing has no real impact on

the overall time. As we assumed, the major share of execution time is needed

for computing the �lter responses via convolution. Interestingly, computing the

feature pyramid itself is not very expensive compared to that. The distance

transform though takes another signi�cant part of time.

We found that we can compute the feature pyramid twice as fast as the original

45

Figure 5.4: Time consumption of major steps in all implemented versions and overall
execution time.

implementation, mainly because we avoid the extra padding. If we use a lookup

table for determining the best orientation and magnitude of each gradient, we can

be nearly three times faster (about 0.24 seconds for the whole pyramid). For just

one image this might seem insigni�cant. For a big database though, we can see a

clear improvement in execution time.

Scoring a model is very expensive compared to feature pyramid computation.

Again, we can see a clear improvement for the straight forward block-wise con-

volution implementation, which is three times faster than the original. We can

�nd three reasons: �rst, we use a highly optimized function that performs each

dot product between a �lter and any subwindow. Second, we choose an optimal

and intuitive memory model for feature maps and �lters which allow fast access.

Third, we allocate only one response map with an ideal size which can be used

for every �lter. The implementation is the fastest of our three versions and also

the shortest one.

We hoped to improve the convolution by taking advantage of the convolution

theorem with the other two versions. While both are a little bit faster that the

original code, they are much slower than the intuitive implementation. We can see

the reason for this considering a small example: given an average �lter with the

size of 6× 6 HOG-cells and a feature map computed from the benchmark image

at its original size with additional padding for detecting objects at the border of

the image, the block-wise convolution needs 7.4 million multiplications in order to

46

yield a correct response map. The FFT versions only needs 0.54 million complex

multiplications in frequency domain plus the e�ort to perform a forward - and in-

verse transformation. The FFT used in our implementations has a computational

complexity of O(n log(n)) and needs n
2 log(n) complex multiplications as well as

n log(n) complex additions. Taking just the multiplications into account, our ex-

ample uses 6.9 million complex multiplications (which equals 6.9 ·4 = 27.9 normal

multiplications) for both forward and inverse transformation and therefore much

more than we need for the simple convolution. Although the above example is

only a very rough estimate, it shows that due to extensive padding necessary to

replace the convolution, the FFT versions are in total more expensive.

The result of the convolution theorem contains far too much information which

is why we have to subsample our correct response map. The notion of using an

FFT to replace a convolution only works if we want to substitute a normal convolu-

tion instead of a block-wise one. The complete convolution of the aforementioned

�lter with the feature map would need 230 million multiplications instead of only

7.4 million. This di�erence cannot be made up by the transformations. In fact we

can see that for this problem, the computation of multiple FFTs is far too slow.

As a result, the overlap-add implementation, which performs a lot more trans-

formations for smaller patch sizes, is even slower than the normal convolution

theorem version.

The distance transform is not much faster than in the original implementa-

tion. We are a little faster in the merging process of the score pyramids due

to careful memory management, but we did not change the computation of the

distance transform apart from slight adaption. There is some optimization po-

tential, namely Felzenszwalb's star cascade, which we did not implement in this

work. One value in �gure 5.4 stands out: the distance transform after a normal

block-wise convolution takes twice as long as in other computations. We did not

�nd a reason for this in the code, the time measuring points are actually the

same as for the FFT convolution. Applying the code to other images besides the

benchmark image showed the same variation.

As mentioned before, the post-processing is not very time consuming. It in-

volves searching for maximums within the �nal score pyramid, computing bound-

ing boxes and excluding double detections.

The overall execution times on the right of �gure 5.4 indicate that all our

three implementations are faster than the original code, but only the block-wise

implementation has a real advantage in terms of computational time. Another

reason for being faster in general which we did not explicitly mention is that

the whole code is implemented in C++. This means that we have no expensive

context changes that arise when calling a C function from Matlab code, and also

the code is compiled and executed instead of interpreted which gives us another

gain in computational time.

47

We also made a test-run for both the original implementation and our fastest

implementation on the 2 GHz multi-threaded quad-core processor. The test on

5105 images with massive parallelization in Matlab and C++ yields overall exe-

cution times of 6.2 and a little under 2 hours, respectively. A big server with 32

virtual processors needs about 15 minutes for our setup, which breaks down to 5

images per second.

5.4 Average Precision

Time and memory footprints only measure quantitative gains between di�erent

code versions. Until now, we have no statement about the quality of our de-

tections, compared to the original system. This is why we analyze the average

precision as a measure of quality in this section.

We apply a classi�er on a test set of images with N di�erent objects depicted

in them, e.g. cars, people, sofas, etc. The subset P ⊂ N describes all object that

we are actually trying to detect, e.g. people. The classi�er returns a set F ⊂ N

of instances that we believe to be correct detections, but that actually contains

only Ft ⊆ F positive instances. The recall and precision of our retrieval result

are then de�ned by

recall =
|Ft|
|P |

(5.1)

and

precision =
|Ft|
|F |

, (5.2)

respectively. Recall measures how many of the desired objects in the whole test

set we found, while precision indicates how many of our retrieved detections are

correct instances. Both measures are correlated, which normally yields a low

precision for a high recall and vice versa.

The VOC challenge evaluation code for object detectors computes a recall/-

precision curve by sorting all detections by score, taking a range of top scoring

instances and computing the precision on this set by comparing them to the

ground truth. A detection is considered to be correct, if its bounding box clearly

overlaps with the ground truth bounding box. They iteratively increase the num-

ber of detections in the set and determine the precision every time. They de�ne

the average precision to be the integral over the resulting curve. The aver-

age precision of a perfect object detector would be 1.0 as it returns all positive

instances of an object class in a test set and no false positive detections.

We analyzed the average precision of all aforementioned implementations on a

test set of 5105 images, without applying the bounding box prediction in the orig-

inal implementation, because we cannot apply it to our systems as we discarded

the interim results and are not able to retrieve the highest scoring positions of

the part �lters. The results are depicted in �gure 5.5.

48

Figure 5.5: Precision and Recall for our implementations and the original code, without
bounding box prediction.

The blue trace shows the average precision of the original implementation,

the red one depicts the block-wise convolution variant and the green graph com-

bines both FFT approaches as they yield the same average precision. We observe

that our models surprisingly perform notably worse compared to the original im-

plementation. The block-wise convolution starts with a better precision for low

recalls but slopes for recalls higher than 0.1.

We could not identify just a single cause for these noticeable di�erences. The

most obvious one is that we implemented nearly all computations with single-

precision �oating point variables, in contrast to Matlab which uses double preci-

sion. The linear structure of the general object detection algorithm supports error

propagation, hence small numeric variations between our code and the original

implementation within the �rst steps of the algorithm can lead to noticeable big

di�erences in the �nal results. Small deviations from the ground truth (gener-

ated by Felzenszwalb's object detection system) can be ampli�ed during further

processing and lead to completely other results. We found that our code detects

persons very well, although the �nal scores a di�erent from those computed with

the original code. Using either FFT approach for convolution yields a worse score

than achieved with the block-wise convolution in time domain. This is not sur-

prising as the forward- and inverse transformation to frequency domain is not

entirely lossless.

While investigating the causes for di�erences in average precision, we found

that using di�erent interpolation methods for rescaling the source image in the

feature pyramid step yields signi�cantly worse average precisions. Figure 5.6 de-

49

Figure 5.6: Caparison of average precisions for di�erent interpolation methods in feature
pyramid computation, with and without using lookup tables for gradient classi�cation.

picts the di�erences. The interpolation method from the original code yielded the

best average precision. We further used the resize function from the OpenCV-

framework with di�erent interpolation �ags. Surprisingly, using more sophisti-

cated interpolation approaches yields reduces the average precision, e.g. Lanczos

interpolation achieves an average precision of 0.412, two percentage points less

than our best implementation and 4 less than the original code.

We also investigated the in�uence of HOG-lookup tables on the average pre-

cision. Lookup tables only work with integer number images, so we loose infor-

mations during downsizing and rounding the values to whole numbers. We found

(�gure 5.6) that using lookup tables has an in�uence, but not always a negative

one: the average precision for the original resizing method even improved a little

bit. In general, we only see an insigni�cant disadvantage in using lookup tables

for classifying orientation and magnitude of gradient vectors, compared to the

slight advantage through saving time.

Overall, we could not identify just one cause for a worser average precision in

our models. We found that the approaches in general perform very well on single

images. Improving the average precision of our implementation will be one of our

main objectives in the future.

5.5 Final Ranking

After comparing the memory footprint, runtime and average precision, we like to

do a �nal ranking for our implementations. Although none of our codes could re-

50

Figure 5.7: Some detections on the benchmark image. (a) original implementation (b)
our best system (c) our system with submodel re-ranking

produce the average precision of the original system due to aforementioned causes,

the simple convolution shows a very good performance in terms of both memory

and time consumption. The notion of �tting the whole computation into the

cache of a processor can not be implemented, as 7 MB do not �t into most com-

mon caches. The attempts of speeding up the computation using the convolution

theorem did not work, although the approaches are in any case faster than the

original code. For future work, we will use block-wise convolution technique.

Last but not least, we present a small optimization for person models. We

observed that the overlap criterion in non maximum suppression sometimes leaves

double detection due to very di�erent sizes of the bounding boxes. We could

decrease the allowed overlap in order to delete more boxes, but this could for

instance lead to a situation where the smallest box for the upper part of the body

is left, leaving half of the body uncovered. Figure 5.7 (b) depicts this situation.

We additionally implemented a procedure that tries to avoid these situations

by ranking the detections by submodel id. We use an alternated, restricted overlap

criterion to detect two boxes that cover the same object. If one of these boxes

comes from a submodel that was trained on the upper part of the model and the

other one the whole body, we discard the �rst one even if it initially had a higher

score. Giving certain submodels a higher priority leads to an improvement in

bounding box detection for some object instances, e.g. the benchmark image in

�gure 5.7 (c). Although we obtain a di�erent precision-recall curve, the average

precision does not change.

51

Chapter 6

Conclusion and Future Work

In this thesis, we introduced an implementation of an object detection system

based on discriminatively trained, part based models. We described how a model

is build from histograms of oriented gradients and applied to feature pyramids.

The deformable structure of a model, de�ned by multiple part �lters and ensured

via generalized distance transform, allows for detecting objects with a wide variety

of appearances in images. We implemented three basic versions of this approach

which work with di�erent convolution approaches. We showed that the most

straight forward implementation speeds up the computation by a factor of three

and is thereby faster than all other implementations. The notion of replacing the

convolution of model �lters with a feature pyramid with an equivalent approach

in frequency domain could be implemented successfully. However, we could not

achieve the same speedup as our best implementation due to a signi�cant de-

crease in operations owed to the de�nition of block-wise convolution. The gained

knowledge about the structure of the approach will be helpful for improving it in

the future.

Future work will focus on our best implementation. We found that it does not

reach the same average precision as the original implementation and identi�ed a

few sources for this discrepancy. Increasing and adapting the average precision

will be the main focus of future work. Additionally, we did not exploit the latest

technology for fast and parallel computing. Re-implementing the algorithm for

execution on a GPU will be another important task. We found that the most

expensive part of the approach mainly is owed to a vast number of dot products

which can be parallelized on a modern graphics card very e�ciently.

We did not put a large focus on speeding up the distance transform. It can be

improved by restricting the area in which it is computed for each response map,

based on the natural structure of a model.

The step of locating an object and computing its size also leaves room for

improvements. We may not be able to use a bounding box predictor due to

the lack of necessary interim results, however there might be ways of improving

bounding boxes based on multiple detections for one instance.

53

Last but not least, we can achieve a noticeable speedup with micro-optimizations.

We suspect that we can omit a few computations without loosing performance.

However, this step needs an extensive performance analysis on a big test set con-

�rm our presumptions.

54

Bibliography

[1] N. Chomsky. Three models for the description of language. Information Theory, IRE

Transactions on, 2(3):113�124, September. [cited at p. 28]

[2] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Pro-

ceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR'05) - Volume 1 - Volume 01, CVPR '05, pages 886�893, Washington,

DC, USA, 2005. IEEE Computer Society. [cited at p. 1, 6, 9]

[3] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The

PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-

network.org/challenges/VOC/voc2007/workshop/index.html. [cited at p. 21, 23, 41]

[4] P. Felzenszwalb and D. Huttenlocher. Distance transforms of sampled functions. Technical

report, Cornell Computing and Information Science, 2004. [cited at p. 12, 13, 30]

[5] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale,

deformable part model. In Computer Vision and Pattern Recognition, 2008. CVPR 2008.

IEEE Conference on, pages 1�8. IEEE Computer Society, August 2008. [cited at p. 2]

[6] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Discriminatively trained deformable

part models, release 4. http://people.cs.uchicago.edu/ p�/latent-release4/. [cited at p. 22]

[7] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Pictorial structures for object recogni-

tion. Int. J. Comput. Vision, 61(1):55�79, January 2005. [cited at p. 15]

[8] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ramanan. Object detection with

discriminatively trained part-based models. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 32(9):1627 �1645, 2010. [cited at p. 1, 2, 7, 8, 9, 16, 17, 18, 19, 21, 22, 28,

41]

[9] R.B. Girshick. From Rigid Templates to Grammars: Object Detection with Structured

Models, 2013. [cited at p. 2]

[10] I. T. Jolli�e. Principal component analysis. Springer, New York, 2002. [cited at p. 6]

[11] Richard G. Lyons. Understanding Digital Signal Processing (2nd Edition). Prentice Hall

PTR, Upper Saddle River, NJ, USA, 2004. [cited at p. 10]

55

Danksagung

I would like to thank Prof. Dr. Rainer Lienhart for enabling me to write this thesis

under his supervision and enriching my work with a lot of constructive ideas.

I also would like to express my deep gratitude towards my father, who for the last 5

years not only ensured my �nancial independence and therefore allowed me to completely

focus on my studies, but who always had a sympathetic ear for the problems of a young

student and a helpful fatherly advice when needed the most.

57

	Contents
	1 Introduction
	2 Preliminaries
	2.1 Histograms of Oriented Gradients
	2.2 Linear filtering
	2.2.1 Filtering in Image Processing
	2.2.2 Score Filtering
	2.2.3 Filtering in Frequency Domain
	2.2.4 Overlap-Add and Overlap-Save

	2.3 Distance Transform

	3 Algorithm Analysis
	3.1 Object Detection with Pictorial Structures
	3.1.1 Deformable Part Models
	3.1.2 Feature Pyramid Scoring
	3.1.3 Deformable Part Model Scoring
	3.1.4 Mixture Models
	3.1.5 Post Processing

	3.2 Original Implementation Analysis
	3.2.1 Technical Overview
	3.2.2 Model Type
	3.2.3 Algorithm Analysis

	4 Implementation
	4.1 Implementation Strategy
	4.2 Model Casting and Datatypes
	4.3 Implementation in Detail
	4.3.1 Feature Pyramid
	4.3.2 Feature Map Convolution
	4.3.3 Distance Transform and Model Structure
	4.3.4 Object Location and Post Processing

	4.4 Code Usage

	5 Evaluation
	5.1 Test Setup
	5.2 Memory Footprints
	5.3 Runtime Evaluation
	5.4 Average Precision
	5.5 Final Ranking

	6 Conclusion and Future Work
	Bibliography

